Distinguishing Infinite Diagrams

Authors

  • José Seoane Universidad de la República

DOI:

https://doi.org/10.48160/18532330me9.204

Keywords:

heterogeneous proofs, infinite diagrams, philosophy of mathematical practice

Abstract

Philosophical literature has exceptionally distinguished between mathematical proof and its expression. The importance of vindicating such distinction lies in the fact that the properties of the expression are not necessarily properties of the proof. This statement is indeed applied to heterogeneous proofs; in them, by definition, the expression combines visual components and linguistic components. This distinction is particularly valuable if the intention is to elucidate certain properties of the diagrams or figures involved in such contexts. The aim of these notes is to focus the attention on a particular property (infinity) and outline a raw classification of infinite diagrams.

References

Chateaubriand, O. (2005), Logical Forms, Campinas: CLE.

Feferman, S. (2012), “And so On...: Reasoning with Infinite Diagrams”, Synthese186: 271-386.

Kleene, S.C. (1974), Introducción a la metamatemática, Madrid: Tecnos.

Malitz,J. (1987), Introduction to Mathematical Logic, NewYork/Heidelberg/Berlin: Springer.

Mancosu, P. (1996), Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century, Oxford: Oxford University Press.

Mancosu, P. y E. Vailati (1991), “Torricelli’s Infinitely Long Solid and its Philosophical Reception in the Seventeenth Century”, Isis82(1): 50-70.

Nelsen, R. (1993), Proofs without Words. Exercises in Visual Thinking, Washington: The Mathematical Association of America.

Nelsen, R. (2000), Proofs without Words II. More Exercises in Visual Thinking, Washington: The Mathematical Association of America.

Sautter, F. (2012), “Dois novos métodos para a teoria de silogismo; método diagramático e métodoequacional”, Notae Philosophicae Scientiae Formalis1(1): 14-22 (accesible en: http://gcfcf.com.br/pt/revistas/vol1-num1-maio-2012/).

Shin, S.-J. (1994), The Logical Status of Diagrams, Cambridge: Cambridge University Press.

Torretti, R. (1980), Kant, Buenos Aires: Charcas.

Published

2018-10-01

How to Cite

Seoane, J. (2018). Distinguishing Infinite Diagrams. Metatheoria – Journal of Philosophy and History of Science, 9(1), 1–11. https://doi.org/10.48160/18532330me9.204

Issue

Section

Articles