Sobre el anti-realismo de Wittgenstein y su aplicación al programa chomskiano
DOI:
https://doi.org/10.48160/18532330me4.125Palabras clave:
anti-realismo, Wittgenstein, Chomsky, representación mental, menteResumen
El objetivo principal de este trabajo es mostrar un mapa conceptual en el que situar a Wittgenstein dentro de las distintas concepciones acerca de la lógica y la matemática. Después analizaré cómo se puede aplicar su concepción de la matemática al formalismo. Por último, analizaré el procedimiento mecánico finito definido por Chomsky y su relación con las nociones de mente y de representación (mental) dentro del marco conceptual expuesto previamente.Citas
Alemán, A. (2011), Lógica, matemáticas y realidad, Madrid: Tecnos.
Berwick, R., Friederici, A.D., Chomsky, N. yJ. Bolhuis (2013), “Evolution, Brain, and the Nature of Language”, Trends in Cognitive Science17: 89-98.
Chomsky, N. (1959), “On Certain Formal Properties of Grammars”, Information and Control2: 137-167.
Chomsky, N. (1975), The Logical Structure of Syntactic Theory, NuevaYork: Plenum Press.
Chomsky, N. (1980), Rules and Representations, NuevaYork: Columbia University Press.
Chomsky, N. (1995a), The Minimalist Program, Cambridge, MA: MIT Press.
Chomsky, N. (1995b), “Language and Nature”, Mind104: 1-61.
Chomsky, N. (2005), “Three Factorsin Language Design”, Linguistic Inquiry36: 1-22.
Chomsky, N. (2006); Language and Mind, Cambridge: Cambridge University Press.
Chomsky, N. (2007a), “Approaching UG from Below”, en Sauerland, U. y H.M. Gärtner (eds.), Interfaces + Recursion = Language?, Berlín: Mouton, pp. 1-30.
Chomsky, N. (2007b), “Of Minds and Language”, Biolinguistics1:9-27.
Chomsky, N. (2008), “On Phases”, enFreidin, R., Otero, C. y M.L. Zubizarreta (eds.), Foundational Issues in Linguistic Theory, Cambridge, MA: MIT Press, pp. 133-166.
Chomsky, N. (2010), “Some Simple Evo Devo Theses: How True Might They Be for Language?”, en Larson, R., Déprez, V. yH. Yamakido (eds.), The Evolution of Human Language, Cambridge: Cambridge University Press, pp. 45-62.
Chomsky, N. (2012), “Some Core Contested Concepts”, Proceedings of the CUNY2012:1-18.
Church, A. (1932), “A Set of Postulates for the Foundation of Logic”, The Annals of Mathematics33:346-366.
Church, A. (1936), “An Unsolvable Problem of Elementary Number Theory”, en Davis,M. (ed.), The Undecidable, NuevaYork: Raven Press, pp. 88-107.
Cutland, N. (1980), Computability: An Introduction to Recursive Function Theory, Cambridge: Cambridge University Press.
Fodor, J. (1992), A Theory of Content and Other Essays, Cambridge, MA: MIT Press.
Frascolla, P. (1994), Wittgenstein’s Philosophy of Mathematics, Londres: Routledge.
Frege, G. (1892), “Sobre sentido y referencia”, en Valdés,L. (ed.), Ensayos de semántica y filosofía de la lógica, Madrid: Tecnos, pp. 84-111.
Gödel, K. (1931), “On Formally Undecidable Propositions of the Principia Mathematica and Related Systems I”, en Davis,M. (ed.), The Undecidable, NuevaYork: Raven Press, pp. 4-38.
Gödel, K. (1934), “On undecidable propositions of formal mathematical systems”, en Davis,M. (ed.), The Undecidable, NuevaYork: Raven Press, pp. 39-74.
Gödel, K. (1944), “La lógica matemática de Russell”, en Mosterín,J. (ed.), Obras completas, Madrid: Alianza, pp. 313-343.
Gödel, K. (1964), “Postscriptum to Gödel 1931”, en Davis, M. (ed.), The Undecidable, NuevaYork: Raven Press, pp. 71-73.
Kenny, A. (1989), The Metaphysics of Mind, Oxford: Oxford University Press.
Kenny, A. (1990), El legado de Wittgenstein, Madrid: Siglo XXI.
Kleene, S.C. (1938), “On Notation for Ordinal Numbers”, The Journal of Symbolic Logic3: 150-5.
Kleene, S.C. (1943), “Recursive Predicates and Quantifiers”, Transactions of the American Mathematical Society53: 41-73.
Kleene, S.C. (1952), Introduction to Metamathematics, Amsterdam: North-Holland Publishing.
Marion, M. (1998), Wittgenstein, Finitism, and the Foundations of Mathematics, Oxford: Oxford UniversityPress.
Monk, R. (1990), Wittgenstein: The Duty of Genius, NuevaYork: Free Press.
Mota, S. (2013), “La propiedad de la recursión en el ‘Tractatus Logico-Philosophicus’de Wittgenstein y su relación con la Teoría de la Computabilidad y la Lógica Matemática”, Observaciones Filosóficas17:http://www.obervacionesfilosoficas.net/lapropiedaddelarecursion.htm
Mota, S. (2014), “La historia y la gramática de la recursión: una precisión desde la obra de Wittgenstein”, Pensamiento y Cultura17: 20-48.
Mounce, H.O. (1981), Wittgenstein’s Tractatus. An Introduction, Oxford: Blackwell.
Odifreddi, P. (2001), “Recursive Functions: An ArchaeologicalLook”, en Claude, C.S., Dinneen, M.J. yS. Sburlan (eds.), Combinatorics, Computability and Logic, Londres: Springer-Verlag, pp. 13-31.
Pinto, S. (2002), “El anti-platonismo del Tractatusde Wittgenstein”, Theoria13: 137-152.
Post, E. (1921), “Introduction to a General Theory of Elementary Propositions”, American Journal of Mathematics43: 163-185.
Post, E. (1943), “Formal Reductions of the General Combinatorial Decision Problem”, American Journal of Mathematics65: 197-215.
Post, E. (1944), “Recursively Enumerable Sets of Positive Integers and their Decision Problems”,en Davis,M. (ed.), The Undecidable, NuevaYork: Raven Press, pp. 305-337.
Pylyshyn, Z.W. (1991), “Rules and Representations: Chomsky and Representational Realism”, en Kashir, A.(ed.), The Chomskyan Turn, Oxford: Basil Blackwell, pp. 231-251.
Quine, W.V.O. (1980), From a Logical Point of View, Cambridge, MA:Harvard University Press.
Robinson, R. (1947), “Primitive Recursive Functions”, Bulletin of the American Mathematical Society53: 925-942.
Rodych, V. (1999), “Wittgenstein’s Inversion of Gödel’s Theorem”, Erkenntnis51: 173-206.
Rodych, V. (2002), “Wittgenstein on Gödel: The Newly Published Remarks”, Erkenntnis56: 379-397.
Rodych, V. (2003), “Misunderstanding Gödel: New Arguments about Wittgenstein and New Remarks by Wittgenstein”, Dialectica57: 279-313.
Shanker, S.G. (1987), “Wittgenstein versus Turing on Nature of Church’s Thesis”, Notre Dame Journal of Formal Logic28: 615-649.
Skolem, T. (1923), “The Foundations of Elementary Arithmetic Established by Means of the Recursive Mode of Thought, without the Use of Apparent Variables Ranging over Infinite Domains”, en Van Heijenoort,J. (ed.), From Frege to Gödel. A Source Book in Mathematical Logic, 1879-1931, Cambridge, MA: Harvard University Press, pp. 302-333.
Soare, R. (1996), “Computability and Recursion”, The Bulletin of Symbolic Logic2: 284-321.
Soare, R. (2009), “Turing Oracles Machines, Online Computing, and Three Displacements in Computability Theory”, Annals of Pure and Applied Logic160: 368-399.
Tomalin, M. (2011, “Syntactic Structures and Recursive Devices: A Legacy of Imprecision”, Journal of Logic, Language and Information20: 297-315. Turing, A. (1937), “On Computable Numbers, with an Application to the Entscheidungsproblem”,en Davis,M. (ed.), The Undecidable, NuevaYork: Raven Press, pp. 116-151.
Wittgenstein, L. (1922), Tractatus Logico-Philosophicus, London: Routledge.
Wittgenstein, L. (1958), Philosophical Investigations, Oxford: Blackwell.(Traducción castellana: Investigaciones filosóficas, Barcelona: Crítica, 1988.)
Wittgenstein, L. (1974). Philosophical Grammar, Oxford: Basil Blackwell. (Traducción castellana: Gramática filosófica, México: UNAM, 1992.)
Wittgenstein, L. (1975a). Philosophical Remarks, Oxford: Blackwell. (Traducción castellana: Observaciones filosóficas, México: UNAM, 1997.)
Wittgenstein, L. (1975b), Wittgenstein’s Lectures on the Foundations of Mathematics, Cambridge, 1939, Chicago: University of Chicago Press.
Wittgenstein, L. (1978), Remarks on the Foundations of Mathematics, Oxford: Blackwell.
Wrigley, M. (1977), “Wittgenstein’s Philosophy of Mathematics”, Philosophical Quarterly27: 50-59.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2016 Metatheoria – Revista de Filosofía e Historia de la CienciaLos documentos aquí publicados se rigen bajos los criterios de licencia Creative Commons Argentina.Atribución - No Comercial - Sin Obra Derivada 2.5