Teorías de partículas. Esbozo de una reconstrucción estructuralista
DOI:
https://doi.org/10.48160/18532330me11.263Palabras clave:
partículas, teorías, reconstrucción racional, estructuralismo metateóricoResumen
Las teorías de partículas intentan describir los constituyentes fundamentales a partir de los cuales se construye toda la materia y las interacciones entre éstos. Estos constituyentes incluyen átomos y moléculas, así como sus constituyentes subatómicos, núcleos y sus partes componentes, incluyendo partículas elementales. Consideramos una alternativa a las teorías de partículas (PT) usuales pero que tratan sobre los mismos fenómenos. Llamamos a estas teorías ‘QT’s’. Este es un intento de proporcionar una descripción formal de los rasgos esenciales de las teorías de partículas en el formato del estructuralismo metateórico.
Citas
Altraus, E.J. and R.D. Sard (1953), “A Cloud-Chamber Study of Neutron Production by Sea-Level Cosmic Rays with Particular Reference to -Mesons Stopped in Lead”, Physical Review91(2): 373-384.
Ballentine, L.E. (1986), “Probability Theory in Quantum Mechanics”, American Journal of Physics 54(10): 883-889.
Ballentine, L.E., (1998), Quantum Mechanics: A Modern Development, Singapore: World Scientific Publishing Co.
Balzer, W., Moulines, C.U. and J.D. Sneed, (1987), An Architectonic for Science: The Structuralist Program, Dordrecht: Reidel.
Bartelborth, T. (2000), “An Axiomatization of Classical Electrodynamics”, in Balzer, W., Sneed, J.D and C.U. Moulines (eds.), Structuralist Knowledge Representation: Paradigmatic Examples, Amsterdam: Rodopi, pp. 333-352.
Birkhoff, G. (1967), Lattice Theory, Providence, RI: American Mathematical Society.
Caves, C.M. (n.d.), Multiple Systems, the Tensor-Product Space and the Partial Trace. http://info.phys.unm.edu/~caves/courses/qinfo-f05/lectures/tensorproduct.pdf.
Caves, C.M., Fuchs, C.A. and S. Rüdiger (2002), “Quantum Probabilities as Bayesian Probabilities”, Physical Review A65:022305.
Cohen-Tannoudji, C., Dupont-Roc, J. and G. Grynberg (1989), Photons and Atoms: Introduction to Quantum Electrodynamics, New York: John Wiley & Sons.
Condon, E.U. and G. Shortley (1951), The Theory of Atomic Spectra, Cambridge: Cambridge University Press.
Dirac, P.A.M. (1958), The Principles of Quantum Mechanics, Oxford: Clarendon Press.
Fano, U. and L. Fano (1959), Basic Physics of Atoms and Molecules, New York: Wiley.
Feynman, R.P. (1951), “The Concept of Probability in Quantum Mechanics”, in Neyman, J. (ed.), Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Berkeley: University of California, pp.533-541.
Feynman, R.P., Leighton, R.B. and M. Sands (1965), The Feynman Lectures on Physics, Vol. III: Quantum Mechanics, Reading, MA: Addison-Wesley.
Gillespie, D.T. (1994), “Why Quantum Mechanics Cannot be Formulated as a Markov Process”, Physical ReviewA 49: 1608.
Gleyzes, S., Kuhr, S., Guerlin, C., Bernu, J., Deléglise, S., Busk Hoff, U., Brune, M., Raimond, J.M. and S. Haroche (2007), “Quantum Jumps of Light Recording the Birth and Death of aPhoton in a Cavity”, Nature446(7133): 297-300.
Griffiths, D.T. (2000), Introduction to Elementary Particles, Weinheim: Wiley-VCH.
Halmos, P.R. (1958), Finite-Dimensional Vector Spaces, Princeton, NJ: Van Nostrand.
Held, C. (2008), “The Kochen-Specker Theorem”, The Stanford Encyclopedia of Philosophy (Winter 2008 Edition), Zalta, E.N. (ed.), <http://plato.stanford.edu/archives/win2008/entries/kochen-specker/>.
Herbut, F. (1992), “Quantum Interference Viewed in the Framework of Probability Theory”, American Journal of Physics60(2): 146-150.
Hooker, C.A. (1975), The Logico-Algebraic Approach to Quantum Mechanics, Vol. I, Dordrecht: Reidel.
Jammer, M. (1966), The Conceptual Development of Quantum Mechanics, New York: McGraw-Hill.
Jaynes, E.T. (2003), Probability Theory: The Language of Science, New York: Cambridge University Press.
Joos, G. (1958), Theoretical Physics, 3rd ed., New York: Hafner Publishing Company.
Kane, G. (1958), Modern Elementary Particle Physics, New York: Cambridge University Press, 2nd ed.
Kane, G. (2016), Supersymmetry and Beyond: From the Higgs Boson to the New Physics, Cambridge, MA: Basic Books.
Koopman, B. O. (1995), “Quantum Theory and the Foundations of Probability”, in MacColl, L.A. (ed.), Applied Probability, New York: McGraw-Hill, pp. 97-102.
Krantz, D.H., Luce, D., Suppes, P. and A. Tversky (1971), Foundations of Measurement, Vol. 1, New York: Academic Press.
Kuhn, T.S. (1978), Black-Body Theory and the Quantum Discontinuity, Chicago: University of Chicago Press.
Martin, B.R. (2011), Particle Physics, Oxford, UK: Oneworld Publications.
Moyal, J.E. (1949), “Quantum Mechanics as a Statistical Theory”, Proceedings of the Cambridge Philosophical Society45: 97-124.
Messiah, A. (1961), Quantum Mechanics, Vols. I and II, Amsterdam: North-Holland.
Nielson, M.A. and I.L. Chuang (2000), Quantum Computation and Quantum Information, Cambridge: Cambridge University Press.
Peres, A. (1995), Quantum Theory: Concepts and Methods, Dordrecht: Kluwer.
Preskill, J. (2004), Lecture Notes, Pasadena,CA: California Institute of Technology, http://www.theory.caltech.edu/people/preskill/ph229/#lecture 2004.
Schmidt, H.J. (2003), “Structuralism in Physics”, The Stanford Encyclopedia of Philosophy (Spring 2003 Edition), Zalta, E. N. (ed.),http://plato.stanford.edu/archives/spr2003/entries/physics-structuralism.
Scott, G.W. (1939), “Focused Beam Source of Hydrogen and Helium Ions”, Physical Review55 (1939): 954-959.
Sneed, J.D. (1964), The Projection Postulate and Quantum Mechanical Measurement, unpublished Ph.D. dissertation, Stanford: Stanford University.
Sneed, J.D. (1970), “Quantum Mechanics and Classical Probability Theory”, Synthese21: 34-64.
Sneed, J.D. (1979), The Logical Structure of Mathematical Physics, Dordrecht: Reidel, 2nd ed.
Sneed, J.D. (2011), “Prolegomena to a Structuralist Reconstruction of Quantum Mechanics”, Metatheoria1(2): 93-130.
Stegmüller, W. (1979), The Structuralist View of Theories, New York: Springer.
Stevens, S.S. (1946), “On the Theory of Scales of Measurement”, Science103: 677-680.
Taylor, J.R. (2006), Scattering Theory: The Quantum Theory of Nonrelativistic Collisions, Mineola, NY: Dover.
von Neumann, J. (1955), Mathematical Foundations of Quantum Mechanics (translated from the German edition by R.T.Beyer), Princeton: Princeton University Press.
Wigner, E.P. (1932), “On the Quantum Correction for Thermodynamic Equilibrium”, Physical Review40: 749-759.
Wilczek, F. (1990), Fractional Statistics and Anyon Superconductivity, Singapore: World Scientific Publishing Co.
Zurek, W.H. (2003), “Decoherence, Einselection and the Quantum Origins of the Classical”, Review of Modern Physics70(3): 715-775.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
LicenciaLos documentos aquí publicados se rigen bajos los criterios de licencia Creative Commons Argentina.Atribución - No Comercial - Sin Obra Derivada 2.5