A Model for n-dimensional Bayes Nets
DOI:
https://doi.org/10.48160/18532330me12.311Keywords:
Bayes nets, structuralism, dimensionAbstract
We reconstruct the core theory for n-dimensional Bayes nets in a clear and complete way in the structuralist framework. Our formulation also includes the n one-dimensional probability spaces and one n-dimensional probability space. We explain the intended systems and the empirical claim of the theory of n-dimensional Bayes nets. In our formulation, the concept of dimension is highlighted, and we discuss whether events or sentences (statements, propositions) could be used as the basic building blocks.
References
Abreu, C., Lorenzano, P. and C. U. Moulines (2013), “Bibliography of Structuralism (1995–2012 and Additions)”, Metatheoria 3: 1-36. https://doi.org/10.48160/18532330me3.91
Balzer, W. (1985), “On a New Definition of Theoreticity”, Dialectica 39: 127-145. https://doi.org/10.1111/j.1746-8361.1985.tb01251.x
Balzer, W., Lauth, B. and G. Zoubek (1993), “A Model for Science Kinematics”, Studia Logica 52: 519-548. https://doi.org/10.1007/bf01053258
Balzer, W., C. U. Moulines and J. D. Sneed (1987), An Architectonic for Science, Dordrecht: D. Reidel. https://doi.org/10.1007/978-94-009-3765-9
Balzer, W. and J. D. Sneed (1977/78), “Generalized Net Structures of Empirical Theories I + II”, Studia Logica 36: 195-211, and 37: 167-194. https://doi.org/10.1007/BF02121266
Bernardo, J. M. and A. F. M. Smith (1994), Bayesian Theory, New York: Wiley. https://doi.org/10.1002/9780470316870
Bremaud, P. (1999), Markov Chains, Berlin: Springer Verlag. https://doi.org/10.1007/978-1-4757-3124-8
Cox, R. (1947), “Probability, Frequency, and Reasonable Expectation”, American Journal of Physics 14(1): 1-13. https://doi.org/10.1119/1.1990764
Endres, E. and T. Augustin (2016), “Statistical matching of discrete data by Bayesian networks”, in Antonucci, A., Corani, G. and C. P. de Campos (eds.), Proceedings of the Eighth International Conference on Probabilistic Graphical Models, Vol. 52 of Proceedings of Machine Learning Research, Lugano: PMLR, pp. 159-170.
Hailperin, T. (1984), “Probability Logic”, Notre Dame Journal of Formal Logic 25: 198-212. https://doi.org/10.1305/ndjfl/1093870625
Kolmogorov, A. N. (1950), Foundations of the Theory of Probability, New York: Chelsea Publishing.
Lauritzen, S. L. (1982), Lectures on Contingency Tables, Denmark: University of Aalborg Press, 2nd ed.
Lauritzen, S. L. and D. J. Spiegelhalter (1988), “Local Computations with Probabilities on Graphical Structures and Their Application to Expert Systems”, Journal of the Royal Statistical Society 50(2): 157-224. https://doi.org/10.1111/j.2517-6161.1988.tb01721.x
Loéve, M. (2017), Probability Theory, New York: Dover Publications, Mineola, revised 3rd ed. https://doi.org/10.1007/978-1-4684-9464-8
Menger, K. (1943), “What Is Dimension?”, The American Mathematical Monthly 50(1): 2-7. https://doi.org/10.1080/00029890.1943.11991313
Michie, D. (ed.) (1979), Expert Systems in the Micro-Electric Age, Edinburg: Edinburgh University Press.
Pearl, J. (1988), Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, San Francisco, California: Morgan Kaufman Publishers Inc., revised 2nd ed. https://doi.org/10.1016/C2009-0-27609-4
Renyi, A. (1970), Foundations of Probability Theory, San Francisco: Holden-Day. (Translation of Renyi, A. 1962. Wahrscheinlichkeitsrechnung, Berlin: VEB Deutscher Verlag der Wissenschaften.)
Schiffer, A. (1987), Remnants of Meaning, Massachusetts: Cambridge. https://doi.org/10.2307/2185491
Sneed, J. D. (1971), The Logical Structure of Mathematical Physics, Dordrecht: Reidel. https://doi.org/10.1007/978-94-010-3066-3
Sokolowski, J. A. and C. M. Banks (eds.)(2010), Modeling and Simulation Fundamentals: Theoretical Underpinning and Practical Domains, Hoboken, NJ: John Wiley & Sons.
Studentý, M. (2010), On Probabilistic Conditional Independence Structures, London: Springer.
von Mises, R. (1981), Probability, Statistics and Truth, New York: Dover Publications, 2nd ed.
Downloads
Published
How to Cite
Issue
Section
License
LicenseThe documents published here are governed by the licensing criteria
Creative Commons Argentina.Atribución - No Comercial - Sin Obra Derivada 2.5 https://creativecommons.org/licenses/by-nc-nd/2.5/ar/