On the Formalism of Johann von Neumann

Authors

  • Abel Lassalle Casanave UFBA/CNPq
  • Luiz Carlos Pereira PUC-Rio/UERJ/CNPq

DOI:

https://doi.org/10.48160/18532330me10.210

Keywords:

formalism, consistency proof, Hilbert, von Neumann, Gentzen

Abstract

In 1930, Johann von Neumann, together with Rudolf Carnap and Arend Heyting, participated in a conference held in Königsberg, called “Second Seminar on the Epistemology of Exact Sciences”. The idea behind the reunion of these three researchers was to compose a fairly faithful picture of the three main foundational programs of mathematics at the time: formalism, logicism, and intuitionism. The main objective of this paper is to propose an analysis of the text “The Formalist Foundation of Mathematics” presented by von Neumann in this conference. We show how, from von Neumann's perspective, the problem of the consistency of mathematical theories results from the transformation of a genuinely philosophical question into a genuinely logical-mathematical question and how a proof of consistency could be seen as the solution to the foundational problem. In the final part of the text, we present some considerations about Gerhard Gentzen’s consistency proofs and their importance to contemporary proof theory.

References

Bernays, P. (1970), “On the Original Gentzen Consistency Proof for Number Theory”, en Kino, A., Myhill, J. y R.E. Wesley, (eds.), Intuitionism and Proof Theory: Proceedings of the Summer Conference at Buffalo N.Y., Amsterdam: North-Holland, pp. 409-417.

Gentzen, G. (1936), “Die Widerspruchsfreiheit der reinen Zahlentheorie”, Mathematische Annalen112: 493-565.

Gentzen, G. (1938), “Neue Fassung des Wiederspruchfreiheis-beweises für die reine Zahlentheorie”, Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften4: 19-44.

Gentzen, G. (1969), The Collected Papers of Gerhard Gentzen (ed. por M. Szabo), Amsterdam: North-Holland.

Hilbert, D. (1918), “Axiomatisches Denken”, Mathematische Annalen78: 405-415.

Hilbert D. (1922), “Neubegründung der Mathematik. Erste Mitteilung”, Abhandlungen aus dem mathematischen Seminar der Hamburgischen UniversitätI: 157-177. (Reimpreso en: Hilbert, D., Gesammelte Abhandlungen, Vol. III, Berlin: Springer, 1935, pp. 157-177.)

Hilbert, D. (1931a), “Beweis des Tertium non datur”, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse (1930): 120-125.

Hilbert, D. (1931b), “Die Grundlegung der elementaren Zahlenlehre”, Mathematische Annalen104: 485-494.

Murawsky, J. (2004), “John von Neumann and Hilbert’s School of Foundations of Mathematics”, Studies in Logic, Grammar and Rhetoric7: 37-55.

Prawitz, D. (1981), “Philosophical Aspects of Proof Theory”, en Fløistad, G. (ed.), Contemporary Philosophy: A New Survey, Volume 1, Philosophy of Language, Philosophical Logic, Dordrecht/Boston/Lancaster: Martinus Nijhoff Publishers, pp. 235-277.

von Neumann, J. (1927), “Zur Hilbertschen Beweistheorie”, Mathematische Zeitschrift26: 1-46.

von Neumann, J. (1931), “Die formalistische Grundlegung der Mathematik”, Erkenntniss2: 116-121. (Seguimos la excelente traducción de Eduardo Giovaninni, este volumen, pp.79-82.)

Published

2020-04-01

How to Cite

Lassalle Casanave, A., & Pereira, L. C. (2020). On the Formalism of Johann von Neumann. Metatheoria – Journal of Philosophy and History of Science, 10(2), 51–59. https://doi.org/10.48160/18532330me10.210