The Constitution of Hilbert’s Program
DOI:
https://doi.org/10.48160/18532330me10.209Keywords:
Hilbert, Bernays, logicism, axiomatics, finitismAbstract
In the pages that follow, it is our intention to present a panoramic and schematic view of the evolution of the formalist program, which derives from recent studies of lecture notes that were unknown until very recently. Firstly, we analyze certain elements of the program (the preference for the axiomatic method, as well as structuralism and logicism). Secondly, we observe how, once the program was established in 1920 (albeit somewhat vaguely), in the period up to 1931, different types of finitism with a common basis were tried out by Hilbert and Bernays, in an effort to define their program precisely and bring it successfully to fruition. The result is a complex research program in constant evolution.
References
Ackermann, W. (1924), “Begründung des ‘tertium non datur’ mittels der Hilbertschen Theorie der Widerspruchsfreiheit”, Tesis doctoral, Universität Göttingen.
Benis-Sinaceur, H. (2015), “Is Dedekind a Logicist? Why Does Such a Question Arise?”, en Benis-Sinaceur, H., Panza M. y G.Sandu (eds.), Functions and Generality of Logic, Reflections on Dedekind’s and Frege’s Logicism, Berlin: Springer, 1-57.
Bernays, P. (1922), “Über Hilberts Gedanken zur Grundlegung der Arithmetik”, Jahresbericht der Deutschen Mathematikervereinigung31: 10-19. (Versión inglesa de Paolo Mancosu: “On Hilbert’s Thoughts Concerning the Grounding of Arithmetic”, en Mancosu (1998), pp. 215-233.)
Bernays, P. (1954), “Zur Beurteilung der situation in der beweistheoretischen Forschung”, Revue Intenationale de Philosophie8: 9-13. Discusión: 15-21.
Bernays, P. (2003), Philosophie des Mathématiques, Paris: Vrin.
Dedekind, R. (1888), Was sind und was sollen die Zahlen, Braunschweig: Vieweg.
Dedekind, R. y H. Benis-Sinaceur (2008), La Création des Nombres, Paris:Vrin.
Detlefsen, M. (1986), Hilbert's Program: An Essay on Mathematical Instrumentalism, Berlin: Springer.
Ewald, W. (1999), From Kant to Hilbert, Vol.2, Oxford: Oxford University Press.
Ferreirós, J. (2009). “Hilbert, Logicism, and Mathematical Existence”, Synthese170(1): 33-70.
Ferreirós, J. (2011), “On Dedekind Logicism”, http:philsci-archive.pitt.edu/13075.
Franks, C. (2009), The Autonomy of Mathematical Knowledge, Hilbert’s Program Revisited, Cambridge: Cambridge University Press.
Frege, G. (1953), The Foundations of Arithmetic, New York: Harper.
Frege, G. (1980), Philosophical and Mathematical Correspondence, Chicago: The University of Chicago Press.
Hilbert, D. (1905), “Über die Grundlagen der Logik und der Arithmetik”, en Verhandlungen des Dritten Internationalen Mathematiker-Kongresses in Heidelberg vom 8. bis 13. August 1904, Leipzig: Teubner, 1905, pp. 174-185. (Versión inglesa: “On the Foundations of Logic and Arithmetic”, en van Heijenoort (1967), pp. 145-56.)
Hilbert, D. (1925), “Über das Unendliche”, Mathematische Annalen95: 161-190. (Versión inglesa: “On the Infinite”,en van Heijenoort (1967), pp. 367-392.)
Hilbert, D. (1927), “Die Grundlagen der Mathematik”, Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität6 (1928): 65-85. (Versión inglesa: “On the Foundations of Logic and Arithmetic”, en van Heijenoort (1967), pp. 464-479.)
Hilbert, D. (1929), “Probleme der Grundlegung der Mathematik”, Mathematische Annalen102: 1-9.
Hilbert, D. (1931), “Die Grundlegung der elementaren Zahlenlehre”, Mathematische Annalen104: 485-494. (Versión inglesa: “The Groundingof Elementary Number Theory”, en Mancosu (1998), pp. 266-273.)
Hilbert, D. (1993), Fundamentos de las Matemáticas, México: Facultad de Ciencias-UNAM.
Hilbert, D. (1999), The Foundations of Geometry, LaSalle, IL: The Open CourtPublishing Co.
Hilbert, D. y P. Bernays (1934-1939), Grundlagen der Mathematik, Vols.I-II, Berlin: Springer. (Versión francesa: Fondements des Mathématiques, Paris: L’Harmattan, 2001.)Hilbert, D.y W. Ackermann (1928), Grundzüge der theoretischen Logik, Berlin: Springer.
Largeault, J. (1992), Intuitinionisme et Théorie de la Démonstration, Paris: Vrin.
Mancosu, P.(ed.) (1998), From Brouwer to Hilbert, The Debate on the Foundations of Mathematics in the 1920’s, Oxford: Oxford University Press.
Mancosu, P.(2010), The Adventure of Reason, Interplay between Philosophy of Mathematics and Mathematical Logic, 1900-1940, Oxford: Oxford University Press.
Poincaré, H. (1905-1906), “Les mathématiques et la logique”, Revue de Métaphysique et de Morale13 (noviembre1905): 815-35;14 (enero1906): 17-34.
Poincaré, H. (1906), “Les mathématiques et la logique”, Revue de Métaphysique et de Morale14 (mayo1906): 294-317.
Shapiro, S. (1997), Philosophy of Mathematics, Structure and Ontology, Oxford: Oxford University Press.
Sieg, W. (2013), Hilbert’s Programs and Beyond, Oxford: Oxford University Press.
Skolem, T. (1923), “The Foundations of Elementary Arithmetic established by Means of the Recursive Mode of Thought, Without the Use of Apparent Variables Ranging over Infinite Domains”, en van Heijenoort (1967), pp. 302-333.
Stenlund, S. (2010), “Different Senses of Finitude: An Inquiry into Hilbert’s Finitism”, Synthese185: 335-363.
Tait, W. (1981), “Finitism”, Journal of Philosophy78: 524-546.
Tait, W. (2002), “Remarks on Finitism”, en Sieg, W., Sommer, R. y C. Talcott (eds.), Reflections on the Foundations of Mathematics: Essays in Honor of Solomon Feferman, Lecture Notes in Logic, Vol. 15, Urbana: Association for Symbolic Logic, pp.407-416.
van Heijenoort, J. (1967), From Frege to Gödel, A Source Book in Mathematical Logic, 1879-1931, Cambridge, MA: Harvard University Press.
Zach, R. (2001), Hilbert’s Finitism, Historical, Philosophical and Mathematical Perspectives, Tesis doctoral, University of California.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Metatheoria – Journal of Philosophy and History of ScienceThe documents published here are governed by the licensing criteria
Creative Commons Argentina.Atribución - No Comercial - Sin Obra Derivada 2.5 https://creativecommons.org/licenses/by-nc-nd/2.5/ar/