Del cálculo diferencial al funcional: consideraciones epistemológicas sobre dos desarrollos históricos
DOI:
https://doi.org/10.48160/18532330me2.75Palabras clave:
cálculo infinitesimal, infinitésimos, derivadas, integrales, distribuciones, funciones generalizadas, intuición, rigorResumen
En el presente artículo se ensaya una sucinta comparación entre el desarrollo del cálculo infinitesimal y el de la teoría de distribuciones a fin de extraer conclusiones tanto históricas como epistemológicas. En ambos casos se observa el refinamiento progresivo de ideas intuitivas sugeridas por diversos procesos físicos, hasta convertirse en las bases rigurosas de gran parte de la matemática fundamental. El solapamiento parcial de las investigaciones en cada etapa con la siguiente apoya una visión continuista en el aumento del conocimiento matemático y refuerza la posición del realismo estructural convergente en la filosofía de la naturaleza.Citas
Berkeley, G. (1951), The Works of George Berkeley,vol. 4, London: Nelson & Sons.
Birkhoff, G. (ed.) (1973), A Sourcebook in Classical Analysis, Harvard: Harvard University Press.
Bochner, S. (1932), Vorlesungen über Fouriersche Integrale, Leipzig: Akadamie-Verlag.
Bochner, S. (1991), El papel de la matemática en el desarrollo de la ciencia, Madrid: Alianza Universidad.
Bombal, F. (2003), “Laurent Schwartz, el matemático que quería cambiar el mundo”, La Gaceta de la RSME 6 (1): 177-201.
Bolzano, B (1810), Beyträge zu einer begründeteren Darstellung der Mathematik. Erste Lieferung, Prague: Caspar Widtmann.
Bolzano, B. (1817), Die drey Probleme der Rectification, Leipzig: Paul Gotthelf Kummer.
Bottazzini, U. (1986), The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass, New York: Springer.
Boyer, C.B. (1959), The History of the Calculus and Its Conceptual Development, New York: Dover.
Bremermann, H. J. y L. Durand (1961), “On Analytic Continuation, Multiplication and Fourier Transformations of Schwartz Distributions”, Journal of Mathematical Physics 2 (2): 240-258.
Brezis, H. y F. Browder (1998), “Partial Differential Equations in the 20th Century”, Advances in Mathematics 135: 76-144.
Bunge, M. (2006), A la caza de la realidad, Barcelona: Gedisa.
Burtt, E. A. (1925), The Metaphysical Foundations of Modern Physical Science, New York: Doubleday.
Carmichael, R. D. y D. Mitrovic (1989), Distributions and Analytical Functions, New York: J. Wiley & Sons.
Cauchy, A. L. (1821), Cours d’Analyse de l’École Royale Polytechnique,Paris: Imprimerie Royale.
Cauchy, A. L. (1823), Résumé des Leçons données a l’École Royale Polytechnique sur l’Calcul Infinité-simal,Paris: Imprimerie Royale.
Child, J. M. (1920), The Early Mathematical Manuscripts of Leibniz, London: Open Court.
Colyvan, M. (2001), The Indispensability of Mathematics, Oxford: Oxford University Press.
Demidov, A. S. (2001), Generalized Functions in Mathematical Physics, New York: Nova Science.
Dieudonné, J. (1981), History of Functional Analysis, Amsterdam: North-Holland.
Dirac, P. A. M. (1926), “On the Theory of Quantum Mechanics”, Proceedings of the Royal Society London A 112: 661-677.
Dirac, P. A. M. (1958), The Principles of Quantum Mechanics, 4th ed. revised, Oxford: Clarendon Press.
Dirichlet, P. G. L. (1830), “Solution d’une question relative à la théorie mathématique de la chaleur”, Journal für die reine und angewandteMathematik 5: 287-295.
Egorov, Y. (1990), “A Contribution to the Theory of Generalized Functions”, Russian Mathe-matical Surveys 45 (5): 1-49.
Fisher, G. (1978), “Cauchy and the Infinitely Small”, Historia Mathematica 5: 313-331.
Fourier, J. (1822), Théorie analytique de la chaleur, Paris: Gauthiers-Villars.
Gårding, L. (1991), Some Points of Analysis and Their History, Providence: American Mathematical Society.
Gel’fand, I. M. y Shilov, G. E. (1964), Generalized Functions, vol. I, New York: Academic Press.
González-Urbaneja, P.M. (1992), Las raíces del cálculo infinitesimal en el siglo XVII, Madrid: Alianza Universidad.
Grabiner, J. V. (1978), “The Origins of Cauchy’s Theory of the Derivative”, Historia Mathematica 5: 379-409.
Grabiner, J. V. (1981), The Origins of Cauchy’s Rigorous Calculus, New York: Dover.
Grattan-Guinness, I. (1970a), The Development of the Foundations of Mathematical Analysis from Euler to Riemann, Massachusetts: MIT Press.
Grattan-Guinness, I. (1970b), “Bolzano, Cauchy and the ‘New Analysis’ of the Early Nine-teenth Century”, Archive for History of Exact Sciences 6 (5): 372-400.
Halperin, I. y L. Schwartz (1952), Introduction to the Theory of Distributions,Toronto: Toronto University Press.
Heaviside, O. (1893), “Operators in Mathematical Physics”, Proceedings of the Royal Society of London–Series A 52: 504-529.
Heaviside, O. (1894), “Operators in Mathematical Physics”, Proceedings of the Royal Society of London–Series A 53: 105-143.
Janiak, A. (2008), Newton as Philosopher, New York: Cambridge University Press.
Kirchhoff, G. R. (1878), Vorlesungen über mathematische Physik, Leipzig: Teubner.
Kirchhoff, G. R. (1882) “Zur Theorie des Lichtstrahlen”, Sitzungsberichte der Königlichen Preussi-sche Akademie der Wissenschaften 18: 641-669.
Lagrange, J.- L. (1813), Oeuvres,vol. 9, Paris: Gauthier-Villars.
Laugwitz, D. (1989), “Definite Values of Infinite Sums: Aspects of the Foundations of Infini-tesimal Analysis Around 1820”, Archive for History of Exact Sciences 39: 195-245.
Levine, I. N. (1977), Química cuántica, Madrid: Editorial AC.
Lightstone, A. H. y K. Wong (1975), “Dirac Delta Functions via Nonstandard Analysis”, Canadian Mathematical Bulletin 18 (5): 759-762.
Lützen, J. (1979), “Heaviside’s Operational Calculus and the Attempts to Rigorize It”, Archive for History of Exact Sciences 21: 161-200.
Lützen, J. (1982), The Prehistory of the Theory of Distributions, New York: Springer.
Luzin, N. N. (2003), “Función” (versión castellana de J. M. Almira y D. Arcoya), La Gaceta de la RSME 6 (2): 413-436.
Mikusiński, J. (1983), Operational Calculus–Vol. I, 2nd ed., New York: Pergamon Press.
Newton, I. (1726), Naturalis Philosophiae Principia Mathematica (Editio tertia), Londini: Regiae Societatis Typographos.
Newton, I. (1736), The Method of Fluxions and Infinite Series with Its Application to the Geometry of Curve-lines, London: H. Woodfall.
Newton, I. (1997), Principios matemáticos de filosofía natural, Madrid: Tecnos.
Newton, I. (2004), Philosophical Writings (ed. por A. Janiak), Cambridge: Cambridge University Press.
Roy, R. (1990), “The Discovery for the Series Formula for p by Leibniz, Gregory and Nilakan-tha”, Mathematics Magazine 63 (5): 291-306.
Rusnock, P. (2000), Bolzano’s Philosophy and the Emergence of Modern Mathematics, Rodopi: Amsterdam.
Russ, S. B. (1980), “A Translation of Bolzano’s Paper On the Intermediate Value Theorem”, Historia Mathematica7: 156-186.
Russ, S. (2006), The Mathematical Works of Bernard Bolzano, Oxford/New York: Oxford University Press.
Russell, B. (1969), Análisis de la materia, Madrid: Taurus.
Schwartz, L. (1950-1951), Théorie des distributions, Paris: Hermann.
Schwartz, L. (1954-1955), “Espaces de fonctions différentiables à valeurs vectorielles”, Journal of Analytical Mathematics 4: 88-148.
Schwartz, L. (1957/1959), “Théorie des distributions à valeurs vectorielles I”, Annales de l’Institut Fourier 7: 1-141; 8: 1-209.
Schwartz, L. (1959), “Théorie des distributions à valeurs vectorielles II”, Annales de l’Institut Fourier 8: 1-209.
Schwartz, L. (1968), Applications of Distributions to the Theory of Elementary Particles in Quantum Mechanics, New York: Gordon & Breach Science Publ.
Sellés, M. (2006), “La paradoja de Galileo”, Asclepio 58 (1): 113-148.
Struik, D. (ed.) (1969), A Source Book in Mathematics, 1200-1800,Harvard: Harvard University Press.
Thayer, H. S. (ed.) (1953), Newton’s Philosophy of Nature, New York: Hafner-Macmillan.
Thomae, J. K. (1875), Einleitung in die Theorie der bestimmten Integrale,Halle: Louis Nebert.
Tréves, F. (1966), Linear Partial Differential Equations with Constant Coefficients, New York: Gordon & Breach Science Publ.
Von Neumann, J. (1932), Mathematical Foundations of Quantum Mechanics (English translation, 1955), Princeton: Princeton University Press.
Weierstrass, K. (1895), Mathematische Werke,vol. 2, Berlin: Knoblauch.
Weierstrass, K. (1988), Ausgewählte Kapitel aus der Funktionenlehre (ed. por R. Siegmund-Schultze), Leipzig: Teubner.
Zermelo, E. (1904), “Beweis, daß jede Menge wohlgeordnet werden kann”, Mathematische An-nalen 59: 514-516.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2012 Metatheoria – Revista de Filosofía e Historia de la CienciaLos documentos aquí publicados se rigen bajos los criterios de licencia Creative Commons Argentina.Atribución - No Comercial - Sin Obra Derivada 2.5