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Abstract
A graphical representation of the model-theoretic structure of explanation is used to re-
construct five distinct specializations of Mendelian genetics. Structural variations between 
the five models are highlighted and used to establish an inter-model variation sequence. Fur-
thermore, the authors explore a geometrical format for the representation of thematic do-
mains, which may reveal important tendencies of conceptual variation. 
Keywords: explanation - structuralism - graphical representation - conceptual change

Resumen
Se utiliza una representación gráfica de la estructura modelo-teórica de explicación para 
reconstruir cinco especializaciones distintas de la genética mendeliana. Las variaciones es-
tructurales entre los cinco modelos son resaltadas y usadas para establecer una secuencia de 
variación intermodélica. Más aun, los autores exploran un formato geométrico para la re-
presentación de dominios temáticos que puede revelar tendencias importantes de variación 
conceptua.
Palabras clave: explicación - estructuralismo - representación gráfica - variación conceptual
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1. Introduction
The concept of model has been characterized in various ways by 20th century 
philosophy of science, and the relative importance of the notion, in science and 
philosophy of science, has also varied. People like Carnap, who considered models 
as nonessential to science or philosophy, albeit their heuristic and esthetic value, 
lost the battle. The importance of models in science has been the bedrock of a long 
intellectual tradition, upheld by the likes of Peirce, Maxwell, Poincaré, Campbell, 
Hutten, Harré, Black, Hesse, etc. As regards philosophy of science, the Semantic 
Conception has made the concept of “model” a fundamental tool for the analysis 
of scientific discourse. At present, this school of thought is gaining terrain, but it 
must be said that there are many variants of the Semantic Conception.

The basic idea on which the many different semantic factions agree is that a 
theory is a determinate family or set of models. It should be stressed that in this 
paper the term “model” is used in a logical-mathematical sense (due to Tarski). To 
offer a model for a theory is equivalent to offering an interpretation of the theory’s 
terms (to give them concrete meaning) so that the theory’s claims are true under 
that interpretation. This is a fundamentally semantic approach, opposed to the 
classical conception that lays emphasis on linguistic-syntactical aspects and views 
theories as sets of statements. As van Fraassen has stated:

According to the semantic view, to present a theory is to present a family of 
models. This family may be described in many ways, by means of different 
statements in different languages, and no linguistic formulation has any privi-
leged status. Specifically, no importance attaches as such to axiomatization, 
and a theory may not even be axiomatizable in any non-trivial sense. (Van 
Fraassen 1989, p. 189)

The way in which models are represented varies from one particular semantic field 
to another. Thus, while Giere does not bestow on them any determinate mathemati-
cal form, van Fraassen sees them as topological structures of a certain phase-space. 
The structuralists (Sneed, Stegmüller, Moulines, Balzer and others), depict mod-
els as set-theoretic predicates, that is as structures formulated in the language of 
set theory.

In the present paper, models will be introduced as conceptual graphs or dia-
grams in the sense of category theory. Before going any further, a brief clarification 
regarding terminology is necessary. On occasions we use the term “model” as a 
graphical representation of a commutative inference system. This of course is dif-
ferent from the Tarskian sense, so we will indicate the Tarskian notion as “model

1
” 

and the graphical representation as “model
2
”.

Regarding the reconstruction of Mendelian theory elements, which are the 
objects of this paper, the authors feel that this mode of presentation has several ad-
vantages, to wit: 1) it allows one to capture the full conceptual edifice of the model, 
literally at a glance; 2) it allows several layers of analytical depth, insomuch that the 
representation can be as detailed or general as is required by context; 3) it recovers 
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all the main meta-scientific distinctions of the Structuralist Program, without the 
technical difficulty to which this school is prone. We suspect that the advantages 
mentioned here may be extended to other applications beyond the realm of genetics. 
Furthermore, having a variety of representational forms strengthens the basis of 
Structuralist meta-theory.

Any theoretical model postulates a set of entities and relations. If sets of these 
entities are represented as points, and their relations depicted as arrows, any model 
may be represented by a certain type of graph.

Several graphs are presented below, but first a few clarifying remarks regarding 
their composition are in order. Points can represent sets of simple elements, or any 
other structure obtained by applying set-theoretic operators. In any case, an entity 
may be decomposed into its simplest components (as if one were zooming in on 
the entity), or reorganized into a more complex structure (as if one were zooming 
out). As far as functions are concerned, two types of arrows are used in order to 
represent whether their origin and target represent the function’s domain and 
range or elements of the domain and range.

(i)  Continuous, broken, and dotted arrows connecting points represent func-
tions where the domain is represented by the origin point, or, if there are 
several points at its origin, the Cartesian product of such sets, and the 
function’s range is the set represented by the target point. For example, an 
arrow going from point A to point B represents a function whose domain 
is A and whose range is B.

(ii) Double-lined arrows represent functions that assign to whatever is repre-
sented by its origin point (or an n-tuple of its origin points, if more than 
one) whatever is represented by its target point. Here, origin and target 
are not the function’s domain and range, but argument and value of that 
function under such argument. Thus, a double-lined arrow from point A 
to point B represents a function f such that f(A)=B.
a. Concerning double-lined arrows, we make a further distinction between 

those connecting a set A and an echelon set from A, and those that do 
not. The first ones we call “structuring”.

b. Furthermore, double-lined arrows, besides connecting points, may also 
connect arrows (or arrows and points). In this case, such arrows are in-
terpreted the same way as when connecting dots. They represent func-
tions that take as one of its arguments the function or set at its origin, 
and yield whatever is represented by the point or arrow at its target.

Theory reconstruction by means of the type of diagrams we propose may give 
way to expedient graphical representations of larger chunks of science, such as 
thematic domains. While we do not dwell in depth on this point in the present 
paper (though we do illustrate below, with five theory elements of Mendelian ge-
netics, the kind of visual display referred to), certain aspects of the issue should 
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be mentioned. Thematic domains (like the domain of biological inheritance or 
the domain of organic evolution) incorporate populations of similar theories (be 
they similar regarding structure or function), though said similarity is difficult to 
determine. By means of a lattice representation of a family of theories, it is possible 
to identify patterns of variation for the whole set, even though the theories in ques-
tion do not belong to the same theory net (nonetheless, the example shown below 
is built with theory elements of the same theory net). An additional advantage of 
our approach is that it may be used to display controversies in conceptual domains 
(e.g. the domain of biological inheritance) as turnovers in theoretical substructures 
(more will be said on structural turnover below). This possibility is not entirely 
available with the usual notions of “holon” and “theory net”.

2. Graphical representation and explanation structure
In another paper (Casanueva & Méndez 2012), we have characterized a form of 
explanation, as shown in Figure 1. The arrangement is divided into two parts: one 
contains the problem or issue of interest, represented here by the arrow A→ Z. The 
other portion depicts the explanation offered by said model

2
 (A → C → D → Z). 

The fragment A→ Z is given in terms which do not presuppose the model
2
’s valid-

ity, that is, in non model
2
-theoretic terms.1 The other pathway is the one which 

introduces theoretical entities (C), operates certain inferences over C in order to 
obtain D, and posits interpretation rules that flow once again to the non-theoretic 
portion (Z). This second route represents the substructure that accounts for the 
problematic issue in question. Even though most models

2
 function in such a man-

ner, on occasions a single mathematical expression, M, supplies the A → C → D → 
Z trail in just one step.

The two paths are joined in a circuit, where the explanatory capacity of the 
model

2
 lays. Moreover, they act out what the covering nomological model assigns 

to explicans (A → C → D → Z) and explicandum (A → Z). If for each element of A 
(considering that capital letters represent sets) both paths arrive at the same destiny 
in Z, the circuit is commutative. Other types of convergence are possible, such as 
inclusion, inequality, difference, approximation, etc. Whatever may be the case, 
inferences concerning one path can be made from the information contained in 
the other. Nonetheless, the model

2
’s explicative strength depends on how the two 

routes are related. The exact same arrival point in Z confers the greatest explicative 
capacity, while difference confers the least. All other relations would be in some in-
termediate range of explanatory power. Logical and mathematical derivations from 
the model

2
’s primitive terms may give rise to new points (additional definitions) 

and new arrows (derived relations), which in turn can give rise to new inferential 

1 With regard to this distinction, see Balzer, Moulines & Sneed (1987).
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pathways (most of the double-lined arrows mentioned above are definitions or 
derived concepts).

3. Graphs: Mendelian genetics
Five specializations of Mendelian Genetics have been chosen in order to graphical-
ly present their conceptual structures. For the sake of simplicity, neither epistasis 
nor multifactorial inheritance has been included; nonetheless, the selected cases 
are representative of the type of conceptual variations that exist in the population 
of Mendelian specializations.2In these five models, constant and variable regions 
are identified.

Figure 2 displays one of the most well-known Mendelian scenarios: complete 
dominance with a 1 to 1 gene-characteristic relation (C11D). Continuous arrows 
frame the fundamental question of Mendelian genetics, that is: how are characteris-
tics transmitted from generation to generation? Or phrased in other terms: why do 
the offspring of certain parents posses the traits they posses? These questions are 
captured along the path:

Figure 1

2 A set theoretic characterization of the complete theory net appears in Casanueva (2003, chapter 4). An alter-
native reconstruction appears in Lorenzano (1995).

Conceptual structure of nomological explanation in theoretical models.
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The graph is subdivided in three zones: the first constitutes what can be termed a 
gene space, the second a description space, and the third is the realm of uni-gamete 
fertilization. Each region constitutes an ontological family, the first is composed of 
genes or “gene families” (sets, tuples, etc.), the second includes characteristics and 
packages of characteristics, and the third encompasses different stages of the life 
cycle. In the first two zones, only structurings and identifications link the entities 
there contained. Biological succession laws are the binding stuff of the entities of 
the third sub-space. The regions outline conceptual hierarchies similar to those 
described by Thagard (1992).

phenotypes
offsprings

sindividual
zygotesgametes

parents
sindividual ndescriptiosontogenesiionfertilizatsisgametogene  → → → →

)()(

Figure 2

C1-1D

Mendelian model of complete dominance with 1 to 1 gene-characteristic relation (C1-1D).
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The diagram shows that Mendelian genetics is a theorization over the uni-gamete 
theory of fertilization (UTF). Even though the concepts of “characteristic” and 
“phenotype” are not part of UTF, neither their use nor their determination pre-
supposes the validity of any genetic laws. These concepts, therefore, belong in the 
non-theoretic portion of C11D. It should be noted that the phenotypes (macro-
scopic descriptions of organisms) are a structuring (double-lined arrows) of the 
types of characteristics. That is, a phenotype is a mosaic of traits, one of each type.

Arrows labeled “bearing” are functions that establish a nexus between life-cycle 
entities and model

2
-theoretic entities. They indicate that individuals as well as zy-

gotes bear diploid genotypes; gametes, on the other hand, carry haploid genotypes.
The segment of the graph which centers on the calculations C11D operates 

(double uppermost arrows), reveals the following items:

(i) A structuring that injects the sets of types of genes into the union of all genes.
(ii) How to construct or obtain haploid genotypes from the sets of alleles 

(genes of the same type). In a similar way as that in which phenotypes are 
contrived, haploid genotypes are conceived as mosaics of genes, one of 
each type.

(iii) The structuring labeled “segregation”, between diploid and haploid geno-
types, indicates how sets of haploid genotypes result from one particular 
diploid genotype. A diploid genotype is a pair of haploid genotypes, and 
“segregation” associates it to a set of haploid genotypes that is obtained 
by recombining the corresponding elements of the diploid in question. 
“Segregation” represents what is commonly known as Mendel’s first law or 
law of independent assortment. 

(iv) “Recombination” is in a sense inverse to “segregation”, since it indicates the 
formation of a genotype or set of genotypes from a pair of haploid geno-
types (or a pair of sets of individual haploid genotypes). This structuring 
is known as Mendel’s second law or law of independent recombination.

(v) The function named “comparison” (n) indicates the relative behavior of 
the genes that make up a diploid genotype, as far as their recessive or 
dominant nature is concerned. In other words, “comparison” (n) reveals 
which genes are expressed.

The application or interpretation phase of C11D (dotted arrows) is represented by 
the functions “causality” (g) and “determination” (s). In this case, the g function 
establishes a 1 to 1 correspondence between genes and characteristics, indicating 
which gene causes which characteristic. In order to find the value of s, g and u 
must be taken into account. Given a diploid genotype x, the application of u results 
in a tuple of genes that are actually expressed (in this case, a sequence of ñ indi-
vidual dominant genes), g then associates each element of the series with its respec-
tive characteristic. Therefore )))x((())),...,x((())),x((()x( n21 νπγνπγνπγ=σ , 
where ))x((i νπ is the ith projection of )x(ν .
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The specializations of Mendelian genetics are variants of the above diagram, 
each offering a different instantiation of the highlighted area (see figures 3 to 6). 
But this does not mean that they are derived from the first one: all five of them are 
at the same level of specialization, in theory-net terms, and all of them are derived 
from a more general theory element (not shown) which only indicates the possibil-
ity of relation between traits and factors. 

Codominance with a 1 to 1 relation (C11CD): In this specialization, the struc-
turing that produces phenotypes changes, due to the introduction of “compound 
characteristics”. As an example, consider the pink flowers of Mirabilis jalapa. This 
hue should not be interpreted as the trait “pink”, but as the combination of two 
simple characteristics, “white flower” and “red flower”. Therefore, this flower color 
should be indicated by the pair (red, white).3 Each phenotype corresponds to a 
series of attributes, and each attribute can be either an individual characteristic or 
a pair of characteristics of the same type.

Due to the fact that co-dominance occurs, the causal relation between genes 
and characteristics (g) includes those cases where one gene dictates the observed 
trait i, as well as those where the trait in question corresponds to the expression of 

3 It is tempting to think of “pink flower” as a distinctive trait, however, what passes for a trait in classical Men-
delian models is a feature that remains constant in a pure line. This does not happen with “pink flower”, 
but does occur with “white flower” and “red flower”. Therefore, “pink flower” is not an element of the set of 
simple traits. It should be noted that “trait” is not a Mendelian genetic-theoretical term, what is Mendelian 
genetic-theoretical is the relationship between traits and factors.

Figure 3

Variation unit in Mendelian models corresponding to C1-1CD.
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a pair of genes. This accounts for the make-up of the domain of g in C11CD. As 
far as the co-domain is concerned, the observed trait may be a pair of analogous 
Mendelian characteristics. Therefore, the pair (light gene, dark gene) corresponds 
with the pair (light flower, dark flower). Since n yields the genes that are actually 
expressed, the co-domain of n includes pairs of genes, for similar reasons that such 
pairs are also elements of the domain of g.

Gene interaction with complete dominance (CV1ID): This is a non-epistasic 
interaction, in that the phenotypic expression of the different pairs of genes is 
not affected by the alleles of other pairs. What characterizes CV1ID is that the 
first generation hybrids do not resemble either parent, and those of the second 
generation seem to possess new characteristics, which are really the result of gene 
interactions in new combinations of genes. This model introduces a new function, 
a, which identifies the sets of genes that determine trait types.

The domain of a is the set of gene classes, and its co-domain is an initial sec-
tion of the natural numbers. A very simple association rule is applied: each type 
(or class) of gene is assigned the subscript of the characteristic type these genes help 
determine. For this reason, the number of characteristic types is strictly less than 
the number of gene classes (since at least one trait is caused by two or more pairs 
of alleles).

The domain of g is a set of gene tuples, and the lengths of these tuples vary ac-
cording to the number of alleles that cause the same characteristic. In other words, 
either one gene or a set of genes may cause a particular trait.

The association rule operated by the s function is as follows. Given a certain 
diploid genotype, the genes that are actually expressed are derived by applying the 
function n (n’s co-domain is the same as in the case of C11D). On the other hand, 
given the structure of g’s domain, one must find a sequence of genes that causes 
a certain characteristic, say C

i
. This is done by identifying, via a, which genes ob-

tained from n determine this characteristic (the subscript i of C
i
). Next, an order-

ing of these genes is necessary so that when g is applied to the resulting tuple, C
i
 

is produced.
Epistasic interactions are not dealt with in this paper; however, a few words 

about them seem in order. Occasionally, when two or more non-allelic genes deter-
mine the same characteristic, one gene or combination of genes masks the effect 
of another gene or of another gene combination. This phenomenon is known as 
epistasis. When it occurs, phenotype frequencies of the second hybrid generation 
deviate from those of the classical Mendelian scenario (3:1, 9:3:3:1). The graphic 
representation of an epistasic model would require imposing restrictions on g’s 
domain and codomain, in order to highlight the types of behavior epistatic genes 
have in regard to other alleles.
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Pleiotropy with complete dominance (CPD): As has been said before, some charac-
teristics depend on the interaction of several pairs of genes. In fact, this is prob-
ably a very common occurrence, perhaps even a norm. Nonetheless, it is also 
true that many pairs of genes determine several characteristics. This is the case of 
CPD. Here the phenotypes correspond to sequences of tuples of characteristics. 
One pair of genes causes each tuple.

The domain of g is the set of all genes (in the same way as in C11D), but the 
co-domain is structured in a manner that is analogous to the function’s domain in 
CVI1D. In order to construct g’s domain, one must introduce a function b, which 
regroups the characteristics that result from the action of one gene. b has the set 
of characteristic types as domain, and an initial section of the natural numbers as 
range. The association rule is quite straightforward: each characteristic type is as-
sociated to the subscript of the gene class, the members of which cause the traits 
confined in the type. For this reason, the number of gene classes is strictly less than 
the number of characteristic types (since at least one pair of genes causes two or 
more characteristics).

g’s co-domain is a set of characteristic tuples, such that the elements of each 
member belong to different types, and the length of each tuple varies according 
to the number of characteristics caused by the same gene. If a given vector x is a 
member of g’s co-domain, then all tuples of the same form (that is, all those that 

Figure 4 

Variation unit in Mendelian models corresponding to CV-1ID.
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contain the same characteristic types and same number of them as x does) are also 
included in said co-domain.

The rule established by s is as follows. Given a certain diploid genotype, the 
genes that are actually expressed are derived by applying the function n (n’s co-
domain is the same as in the case of C11D). The genes so identified are then as-
sociated to sequences of characteristics, as stipulated by the function g.

Figure 5 

Pleiotropy with co-dominance (CPCD): In this case, phenotypes are sequences, 
the elements of which may be either a series of characters or a pair of character 
series. The differences with CPD are due to the issue of co-dominance. It is this 
consideration that underlies the make-up of the domain and co-domain of g. As 
is to be expected, the domain of n is the same as in C11CD. s’s association rule is 
also the same as in C11CD.

Variation unit in Mendelian models corresponding to CPD.
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4. Substructures and ordination  
of thematic domains

Graphs are structures composed of distinct parts. The importance of this rather 
obvious statement is that certain parts may be regarded as units of variation in a 
population of models

2
. Besides points and arrows, within a graph one can distin-

guish compound substructures, sub-graphs, or “cut-outs” that include more than 
one individual element. For example, the uni-gamete fertilization theory that consti-
tutes the base of the five genetic specializations mentioned before can be seen 
as a “cut-out” or sub-graph. The elements that make up a substructure must be 
contiguous, that is linked in a continuous or connected manner. A graph may 
be visualized, then, as a mosaic of sub-structures, áSE

1
, SE

2
,…, SE

n
ñ, if these are 

selected adequately. Figure 7 (a to d) displays a collection of 20 different “cut-outs” 
obtained from the five Mendelian models described above.

Figure 6

Variation unit in Mendelian models corresponding to CPCD.
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Figure 7a 

Figure 7b

Variation units present in the “inferential calculus” portions (T-theoretical) of the different 
specializations.

Variation unit present in all models. The part corresponding to gametogenesis and fer-
tilization has been simplified; this does not affect our analysis since the substructure in 
question is common to all models.
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Figure 7c

Figure 7d 

Variation units present in the “interpretation or application” portions (nomologi-
cal issue, laws of models) of the different specializations.

Variation units present in the non T-theoretical portions of the five Mendelian 
specializations.
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A thematic domain is the conceptual space that contains the diverse theoretic 
alternatives to a basal problem. This is the problem that all the models

2
 of the 

domain propose to solve. Genetic theories, be they Mendelian or non-Mendelian, 
propose a solution to the trans-generational transmission of characteristics. It is 
this common objective that allows the theories in question to debate and dialogue 
with each other. However, the models

2
 do not necessarily characterize the basal 

problem in the same manner, nor do they have to give equal weight to the same 
features of said problem.

The thematic domain can be visualized as a place of confluence, where differ-
ent models (both models

1
 and models

2
) “discuss” a particular theme or topic. It is 

the place where they exert mutual influences and tensions on each other, resulting 
in their own modification. These transformations are particularly evident when 
one model

2
 incorporates structures of another,4or partially imitates structures of 

another.5

Table 1
C11D C11CD CV1ID CPD CPCD

SE1 1 1 1 1 1
SE2 1 0 1 0 0
SE3 0 1 0 0 0
SE4 0 0 0 1 0
SE5 0 0 0 0 1
SE6 1 0 1 0 0
SE7 0 1 0 0 0
SE8 0 0 0 1 1
SE9 0 0 0 1 0
SE10 0 0 0 0 1
SE11 1 0 0 1 0
SE12 0 1 0 0 1
SE13 0 0 1 0 0
SE14 1 0 1 1 0
SE15 0 1 0 0 1
SE16 1 0 0 0 0
SE17 0 1 0 0 0
SE18 0 0 1 0 0
SE19 0 0 0 1 0
SE20 0 0 0 0 1

Within the Semantic Conception, the Structuralist Program offers graphic representa-
tions of theory nets and theory holons which are, in effect, renderings of certain 
types of conceptual spaces. However, such portrayals are based on intertheoretical 

4 Consider, for example, the incorporation of the biometricians’ correlation table in the Mendelians’ theoreti-
cal and instrumental paraphernalia (see Fisher 1918).

5 For example, Yule’s (1902) attempt to derive the law of ancestral inheritance form quasi-Mendelian models.
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relations; other “slices of science”, modes of display, and other characterizations of 
conceptual space, are possible. We explore these issues in the following paragraphs.

As an abstract space, the domain can incorporate the effects that scientific 
debate has on the models involved (both models

1
 and models

2
). A domain induces 

a spatial representation of its objects (scientific theories) in such a way that inter-
model

2
 similarity relations are revealed. In various fields of study, investigations 

that require the construction of a “concept space” usually do this by means of a 
multivariate algorithm, such as multidimensional scaling, correspondence analysis 
or some other procedure. The same strategy may be applied in building a theoreti-
cal thematic domain, but issues regarding the choice of algorithm as well as the 
choice of inter-model distance or similarity formula arise, for which there is no 
satisfactory or clear-cut answer. The technique known as Formal Concept Analysis 
(Davey & Priestly 2002, Widdows 2004, Willie 2005) seems to be a more viable 
alternative, since it operates on purely set-theoretic principles, without having to 
ponder dubious numerical inter-model proximity indices. The domain is repre-
sented as a lattice that highlights structural variation among the theories in ques-
tion. In what follows, Formal Concept Analysis will be used to create a domain 
space with the five Mendelian models mentioned above.

Figure 8

Mendelian Concept Lattice.
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The arrangement of Mendelian models versus substructures (Table 1) may be re-
cast as a tuple K = áM, S, Iñ, such that M is the set {C11D, C11CD, CV1ID, CPD, 
CPCD}, S is {SE

1
, SE

2
,…, SE

20
}, and I is a subset of M ´ S. This last relation states 

that for every áx, yñ Î I, y is a substructure of x. Given any subset A of M, a set 
B may be defined so that B º {s Î S/ám, sñ Î I for all m Î A}. Likewise, for any 
subset B of S, one can define a set Aº {m Î M/ám, sñ Î I for all s Î B}. Consider 
now two pairs of sets (A

1
, B

1
) and (A

2
, B

2
), where B

i
º {s Î S/ám, sñ Î I for all m Î 

A
i
}; it is possible to stipulate an order relation, £, so that (A

1
, B

1
) £ (A

2
, B

2
) if and 

only if A
1
Í A

2
, which further implies that B

2 
Í B

1
. With these criteria, table 1 can 

be converted into a concept lattice, like the one depicted in figure 8.
Each point of the lattice represents a pair of sets, and each connecting line 

reveals the order relation just mentioned. The five central nodes represent, each, a 
single Mendelian model with all its substructures (substructures that are found only 
in that model). Nodes closer to the apex of the lattice also represent Mendelian 
concepts, but of a more diffuse kind. Take the node marked by the set {C11D, 
CV1ID, CPD}, for example; it represents the class of models in which gene domi-
nance is prevalent (S 14 is the substructure pertaining to dominance).

There is a peculiar emerging pattern in figure 8: the five central points of the 
lattice outline the sequence CV1ID, C11D, CPD, CPCD, and C11CD. Of course, 
none of these points are interconnected directly, since such an edge would not 
comply with the order relation £ (in other words, no single Mendelian model is 
a join or a meet of another single Mendelian model). Nonetheless, £ induces a 
clear pattern, with no confusing crisscrosses, from which the sequence in ques-
tion arises. It is tempting to view the series CV1ID, C11D, CPD, CPCD, C11CD 
as a trajectory of structural variation. In fact, the lattice in figure 8 reveals how 
substructures are alternating along the series; figure 9 just accentuates this aspect 
of the preceding diagram. The sequence CV1ID, C11D, CPD, CPCD, C11CD 
combines variability of gen-characteristic interaction, variability of the phenotype 
concept, and variability of the gen-dominance relation.

Figure 9

Substructure distribution along a Mendelian model sequence.
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Theory specialization can be represented as a branching tree, like the Structuralist 
Program proposes: the base node being the least restricted variant of the theory 
in question (its fundamental law is not hampered by special laws), while branch 
nodes reveal the more constrained versions of said theory (the fundamental law’s 
scope is limited by special laws). Mendelian genetics fits a tree-like structure very 
well (see Casanueva 2003), and it would seem that any other ordering instrument, 
such as Formal Concept Analysis, is uncalled for. 

Nonetheless, a lattice display could be viewed as an alternative mode of pre-
senting specialization orders, instead of structuralism’s tree-like theory nets, since 
the lattice arranges the models

2
 by means of a sequenced compounding of restric-

tions (specializations). Further study is necessary regarding the comparison of 
these two modes of presentation, though they seem very similar. Notwithstanding, 
the lattice (unlike the theory net) does not presuppose an essential element that 
must be present in any type of model

2
 (the fundamental law); emphasis is placed 

on the units of structural variation. In a future paper we will discuss in depth the 
differences between these two arrangements. 

Still, a thematic domain covers more than single theory evolution or specializa-
tion net. Several different and competing theories, each with a host of variants, can 
make up a domain. Formal Concept Analysis may prove to be a powerful tool in 
representing such a complex structure.
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