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Abstract
A structuralist “reconstruction sketch” of an idealized theory is provided. This theory, QM, 
has some essential features of quantum mechanics. QM is a theory about abstract “result-ob-
servation events”, formal characterizations of interactions among physical systems and their 
results. QM is a stochastic theory and in the stochastic apparatus some features of “real life” 
quantum mechanics are recognizable. The result-observation events themselves exhibit nei-
ther essentially quantum mechanical features nor essentially physical features. At the level of 
the basic theory element QM is more like a specialization of probability theory than a physi-
cal theory. It is only at the level of specialization of the basic theory element that essentially 
physical and quantum mechanical features may be introduced. The account provides a “re-
construction sketch” rather than a reconstruction largely in that no account is given of physi-
cally interesting specializations. It also falls short of a full reconstruction in that the mathe-
matical apparatus is restricted to finite structures.
Keywords: structuralism - quantum - mechanics - probability

Resumen
Se proporciona un “esquema de reconstrucción” estructuralista de una teoría idealizada. Esta 
teoría, QM, tiene algunas características esenciales de la mecánica cuántica. QM es una teo-
ría acerca de “eventos de observación de resultados” abstractos, caracterizaciones formales de 
las interacciones entre los sistemas físicos y sus resultados. QM es una teoría estocástica y en 
el aparato estocástico son reconocibles algunas características de la mecánica cuántica de la 
“vida real”. Los eventos de observación de resultados mismos no exhiben características esen-
cialmente mecánico-cuánticas ni características esencialmente físicas. En el nivel del elemen-
to básico de la teoría, QM es más como una especialización de la teoría de la probabilidad 
que una teoría física. Es recién en el nivel de especialización del elemento básico de la teoría 
que se pueden introducir características esencialmente físicas y de mecánica cuántica. En el 
presente artículo se ofrece un “esquema de reconstrucción” más que una reconstrucción, de-
bido en gran medida a que no proporciona un tratamiento de las especializaciones físicas in-
teresantes. Tampoco constituye una reconstrucción completa en tanto el aparato matemático 
se limita a estructuras finitas.
Palabras clave: estructuralismo - cuántica - mecánica - probabilidad
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1. Introduction 
The aim here is to provide a structuralist “reconstruction sketch” of a somewhat 
abstract, idealized theory which has some of the essential features of quantum 
mechanics. This is an abbreviated version of a longer work in which most of the 
mathematical detail and illustrative examples have been omitted. 

The discussion presupposes acquaintance with the structuralist approach to 
reconstruction of empirical theories as described in detail in Balzer, Moulines & 
Sneed (1987), Sneed (1971), and in somewhat less detail in Stegmüller (1979). A 
summary discussion of this approach in a somewhat wider context is provided in 
Schmidt (2003). Within this framework, the focus is on sketching the formal core 
of a basic theory element         
 〈Mpp, Mp, M, C〉     [1-1] 
where the components of this core are described respectively in [2], [3], [4] and 
[6]. Some specializations are considered informally in [5]. Intended applications 
will not be explicitly considered. 

The theory is called “QM”. QM is essentially a theory about abstract “result-
observable events”. Roughly, result-observable events are abstract, formal 
characterizations of interactions among physical systems and the results of these 
interactions. QM is a stochastic theory and it is mainly in the stochastic apparatus 
that some features of “real life” quantum mechanics can be recognized. The 
result-observable events themselves exhibit no essentially quantum mechanical 
features. Indeed, they exhibit no essentially physical features. At least at the level 
of the basic theory element [E-1-1] QM is more like a specialization of probability 
theory than a physical theory. Somewhat like the Cheshire Cat’s grin, QM is 
quantum mechanics with everything but the probability theory and linear algebra 
removed. 

It is only at the level of specialization of the basic theory element that 
essentially physical and quantum mechanical features may be introduced. The 
present account provides a “reconstruction sketch” rather than a reconstruction 
largely in the sense that no account is given of these physically interesting 
specializations. It also falls short of a full reconstruction in that the mathematical 
apparatus is restricted to finite structures. 

The main ideas of QM are sketched here. This sketch is intended to indicate 
the basic features of QM to be elaborated below and suggest analogues to 
quantum mechanics. These analogues will be intuitively apparent only to those 
who have some knowledge of quantum mechanics. There is no attempt to 
provide this knowledge here. Within the framework of QM it is also possible to 
characterize linear operators assigned to observables, their eigenvalues and 
expectation values [4.2]. While this might make the resemblance between QM 
and some well known formulations of quantum mechanics more apparent, it does 
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not appear to be the most efficient approach to a structuralist reconstruction. The 
basic idea of QM [1.1] and the formal constructs representing them [1.2] are 
sketched. An overview of the subsequent elaboration of these ideas is provided [1.3]. 
The unfamiliar notation in this section is explained in [3.1]. 
 

1.1 Basic idea 
QM is a theory about result-observation events described by conjunctions roughly 
of the form   
 

~~
υο ˆ̂

         
υο ˆˆ ∈      [1-2] 

where υ̂ and ο̂ are respectively an observable and a result of that observable. 
Observables υ̂ are partitions of the set of states of a system; results ο̂ are 
members of partitions υ̂. The meaning of the under-script ‘~’ is explained below 
[2.2.3.3]. 

These results are associated with vectors 
 ο̂     [1-3] 

in a Hilbert space , a finite dimensional, complex inner product space. Values 

of certain conditional probabilities, fundamental to the theory, are determined by 
the inner product in the following way 
 

2
•

=





••

οουουο ˆˆˆˆˆˆ
~~~~

p . 
    [1-4] 

The vectors ο̂ and the space  in which they live are theoretical concepts in 

QM. The ο̂ play a role in QM analogous to that of state vectors in quantum 

mechanics. The results appearing in vectors on the right side of [E-1-4] are 
associated with their corresponding observables in the conditional probability on 
the left side. These conditional probabilities are the non-theoretical concepts of 
QM. 

The vector ο̂ may be expressed as a linear combination (superposition) of 

basis vectors for any basis in . But, the notation ‘
~~
υο ˆ̂’ keeps in view the 

“natural” bases in which ο̂ is itself the single non-null basis vector in the 
expression. 

That ‘
~~
υο ˆ̂’ is a conjunction is essential to viewing 

 2ˆˆ 
•
οο  

    [1-5] 

as the value of a conditional probability. Roughly, ‘
~~
υο ˆ̂’ is understood to mean 

 ‘ ο̂ is the result of observation of observable υ̂.’ 
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The conditional probability can be given a more concrete interpretation by 
including a temporal index so that 
 

2

-1t
-1t-1t

tt


•
=





••

οουουο ˆˆˆˆˆˆ t

~~~~
p . 

    [1-6] 

The under-script ‘~’ appears in the probability expression to indicate that the 
entities are “events”, appropriate arguments for probability functions. Thus, 
‘

t~
ο̂

t~
υ̂ ’ is understood to mean 

 ‘
t~

ο̂  is the result of observation of 
t~

υ̂ at time t.’ 

The conditional probability is then  
‘the probability that 

t~
ο̂  results, given that an observation of 

t~
υ̂  occurs at 

t, and that 
-1t~

ο̂  was the result of observation of 
-1t~

υ̂ occuring at time t – 1.’ 

The notation (explained more fully in 2.2.3.3) works so that ‘
t~

υ̂ ’ and ‘
-1t~

υ̂ ’ 

generally denote observations of different observables, the ‘t’ and ‘t – 1’ serving to 
distinguish the observables. 

Though it is not always made explicit, quantum mechanics may be viewed as 
dealing with conditional probabilities roughly of the form [E-1-6] where the 
conditioning proposition describes a “state preparation procedure” and an 
“observation” of a system in the prepared state. In the terminology of QM, a result-
observation event is a state preparation and a observation event alone is an 
observation. A QM observable is analogous to the physical interpretation of a 
quantum mechanical observable, a Hilbert space operator. 

An explicit expression of this view is provided by: 
 

[...] to assert that the state vector is Ψ can be regarded as implying that the 
system has undergone a corresponding state preparation procedure, which 
could be described in more detail but all the relevant information is 
contained in the specification of Ψ. (Ballentine 1986, pp. 885-886) 

 

Much the following discussion may be viewed as nothing more than working out 
the formal details required to view quantum mechanical probabilities in this way. 
More explicitly, that “which could be described in more detail” is. In the course of 
doing this the precise sense in which “all the relevant information is 
contained...in Ψ” will become clear. 

Roughly, QM observables do two things: 
1) determine the structure of the result lattice [2.2.2], the fundamental 

non-theoretical construct of QM; 
2) describe the probabilities treated by QM [2.3]. 

However, they do not play an explicit role in determining these probabilities [4]. 
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Explicitly describing the probabilities treated by QM is essential to a 
structuralist formulation of the theory. It is required for formal description of the 
non-theoretical structures. Intuitively, it is required to say what the theory is 
“about”. Examples will be provided to demonstrate that this view of probability 
statements is a plausible, internally consistent rendering of probability statements 
in contexts analogous to those appearing in standard expositions of quantum 
mechanics. 

But, it will not be argued systematically that this view is adequate to all uses of 
probability statements in quantum mechanics. 

Aside from plausibility and internal consistency, the chief virtue in this 
view is that quantum mechanical probabilities are simply special cases of the 
probability concept now standard in mathematical treatments of probability 
theory. This view has been sketched in (Sneed 1971) and elaborated in 
(Herbut 1992). Here, it is elaborated in somewhat more detail within the 
framework of a structuralist reconstruction (Balzer, Moulines & Sneed 
1987). Another virtue is ontological austerity. All constructs are based on 
“systems” viewed a sets of “states” manipulated with familiar mathematical 
apparatus. Possibly, the chief vice in this view is the cumbersome notation 
required to describe it precisely. 

 

1.2 Formal Constructs 
Result-observation events are abstract models for events which may be intuitively 
conceived as interactions of object and apparatus systems with results which are 
interpreted as values of certain observables of the object system. 

This conception is elaborated by considering somewhat abstract system-
observable structures 
 〈S, OS〉 [1-7] 
where S is a finite set and OS is a set of partitions of S. Members of S 
 σ ∈ S [1-8] 
are states of system S. Members 
 υ ∈ OS  ⊆ POT(S) [1-9] 
of Os are S-observables. Intuitively, these are partitions that can be “physically 
realized” in the sense that there are physical means of determining which member 
of the partition contains the state of S at a specific time. 

Partitions of S are viewed as a lattice VS with “finer than” partial ordering s
 . 

The set of observables OS is required to be “upwardly closed” under s
  in that 

 υ ∈ OS, ss O∈⇒
••
υυυ  . [1-10] 

It is characterized by a sub-set of maximal partitions sÔ , 
 sÔ ⊆ OS [1-11] 
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the s
 -finest partitions. Intuitively, the members of maximal partitions 

 sÔˆ ∈υ  [1-12] 

provide them maximally specific information about the state of S that can be OS-
observed. 

Sets of Results for observable υ ∈ OS will be denoted generically by ‘ο’ so that 
‘ου’ denotes an ordered pair consisting of an observable of υ together with the 
result ο. 

The set 
 { }υοου ⊆=soB      [1-13] 

may be given the structure of a Boolean algebra soBυ  whose order relation is 

determined by the sub-set ordering of soBυ . 

The set 
 


sO

s
oL

∈
=

υ
υ      [1-14] 

may be given the structure of a result lattice s
oL  with an order relation derived 

from the sub-set relations on s
oL . The atoms of s

oL  are 

 


sO

s
oA ˆˆ

ˆ
∈

=
υ

υ .     [1-15] 

The central theoretical construct of QM is [|], an embedding of the result lattice 
s
oL  into the lattice of sub-spaces L of the Hilbert space , so that [ο] is a sub-space 

of . For the [ ]-image of atoms, s
oA∈ο̂ , traditional notation for normalized 

vectors ο̂ viewed as representing one dimensional subspaces [ο̂ ] is employed. 

Probability functions in QM are familiar Kolmogorov probabilities defined 
on a finite Boolean algebra. In theoretical structures of QM, conditional 
probabilities in the static case are determined by 
 [ ] [ ]tt

1-t1-ttt
οουουο ˆ

~~~~
WTrp =


  

    [1-16] 

where |W| is a statistical operator on  such that  

 [ ] [ ] 1ˆ =1-t1-t οο WTr .     [1-17] 

 

The overscript Ô  denotes the adjoint of operator O . The notation departs 

from the usual and is explaned in 3.1 below. 
This reduces to [E-1-6] in the case of one-dimensional subspaces where |[ο]| is 

the projection operator corresponding to the subspace [ο]. A more general 
formulation is provided in [4.1]. 
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1.3 Overview 
The discussion of QM begins with the non-theoretical structures Mpp [2] which 
consist of probability functions over a Boolean algebra of descriptions of 
sequences result-observation events. Ultimately, QM determines the values of 
certain conditional probabilities for these probability functions. Roughly, these 
are the probability that a specific result obtains, given the occurrence of an 
observation event and the results of a previous observation event. The result 
descriptions which appear in these conditional probabilities have the structure of 
an orthomodular, orthocomplemented lattice, a result lattice s

oL  [2.2.2]. 

The central mathematical construct for quantum mechanics is a separable, 
infinite dimensional, complex Hilbert space [3.1]. More abstractly, the 
mathematical structure is the lattice of closed sub-spaces of such a Hilbert space, a 
modular, orthocomplemented lattice. Here, we restrict our attention to the 

special case of finite dimensional Hilbert spaces  and their lattice of sub-spaces. 

Theoretical structures Mp of QM [3] are essentially an embedding [.] of the non-
theoretical result lattice s

oL  into the lattice of sub-spaces in such a way that the 

lattice structure is preserved [3.2]. 
The fundamental theoretical law determining the class of models M for QM 

[4] requires that the conditional probability values in the non-theoretical 
structures are determined by the inner product on the Hilbert space (generally, 
together with a statistical operator on the Hilbert space) into whose lattice of sub-
space the non-theoretical non-theoretical projector lattice is [.]-embedded. 
Different [.]-embeddings result in different determinations. 

Constraints C for the basic theory element for QM will be informally 
considered in [6]. 

 

2. Non-theoretical Structures: Mpp[QMS] 

The set of non-theoretical structures for QM is Mpp[QMS]. Its members are of 

the form 
 〈S, T, p〉     [2-1] 
where S is a “system”, T is an interval of integers interpreted as “time” and p is a 
conditional probability function on sequences of “result-observation” events, 
described in more detail below [2.2.3]. 

 

2.1 System structures: S 

 S = 〈, ≈, ι, , , O〉     [2-2] 
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where  is a set of systems, S ∈ . Systems are finite sets of states, though  may be 

infinite. Members and sub-sets of system S 
 σ ∈ S ∈ POT(S)     [2-3] 
are respectively micro states and macro states of S. Both are states of S. Intuitively, 
systems have histories in which S is in exactly one of its states at any time in its 
history. 

Members of are disjoint. Components ≈ and  are respectively an 

equivalence relation and a concatenation operation on  [2.1.1]. ι is an 

isomorphism function for equivalent systems. Intuitively, ≈-equivalent systems are 
systems of the same kind, e.g. electrons. They have the same cardinality and the 
isomorphism ι describes what counts as the same state in distinct, but equivalent 

systems.  is a set of elementary systems from which all members of are 

constructed via -concatenation. O assigns to systems certain partitions of their 

states which are “observable” [2.1.2]. Here we will focus mainly on  and O. The 

remainder of the elements in the structure S are essential for formulating the 

constraints C, which we treat only summarily and informally [6]. A full discussion 

of system structures would require consideration of the construction of  from . 

This is not provided here. 
 

2.1.1 Concatenation 
-concatenation is simply set-theoretic cross product, ×, renamed to indicate its 

role in this context. Thus, 
 

 ∈ SET(2, )     [2-4] 

such that, for all SI, SII ∈ , 

 SIII = SI  SII = SI × SII.     [2-5] 

States of concatenations correspond to states in their concatenates in the manner 
defined by 
 ( ) ( )( )IIIIIII

I SPOT,SPOTSETO  ∈      [2-6] 

such that, for all I ∈ POT(SI), 
 ( ) IIIIIII

I
III

I S O: ×==  .     [2-7] 

Intuitively, members of ( )IIII
IO   are sets of pairs, the first member of which is a 

member of a member of I and the second member is any member of SII. Still 
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more intuitively, all you know about members of ( )IIII
IO   is that the first member 

of pairs it is in I. 
 

2.1.2 Observables 
The element O appearing in [E-2-2] is an S-observable structure [2.1.2.2], 

assignment of certain s
 -structured sets of S-partitions [2.1.2.1] to members of . 

 

2.1.2.1 S-partitions 
The partition lattice of system S 
 VS = 〈|VS|, s

 , s, s, {S}, 
v
S 〉.     [2-8] 

Partitions in concatenations correspond to partitions in their concatenates in the 
manner defined by 
 ( )IIIIIII

I V,VSETV  ∈      [2-9] 

 { } { }IIIII
I

IIIIIIII
I

III
I SV υοουοου ∈=∈×==   : .     [2-10] 

Thus, members of ( )IIII
IV υ  are sets of pairs, the first member of which is a 

member of a member of υI and the second member is any member of SII. 
Note that 

 III
I
υ III III

II
υ  ∈ |VIII|.     [2-11] 

 

2.1.2.2 S-observable structures 
For S ∈ , the set of S-observable structures is 

S = {OS = 〈|OS|, s
 〉|  

1) |OS| ⊆ |VS|; 
2) υ ∈ |OS|, 

•
υ  ∈ |VS|, υ 

••
⇒υυs

  ∈ |OS|;          [2-12] 

3) os
  = s

 |
sO

 }.  

Members of S are partial orderings (members of |PO|) whose elements are sets 

of S-partitions |OS| [E-2-12-1] upwardly closed under the partition refinement 
relation s

  [E-2-12-2], and ordered by the restriction of s
  to |OS| [E-2-12-3]. 

The set of -observable structures is 

  = {S| S ∈ }     [2-13] 
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an S-observable assignment, a function 
 O ∈ SET(, )     [2-14] 

such that, for all S ∈ , 

 OS:= O(S) ∈ s.     [2-15] 

The element O appearing in [E-2-2] is an S-observable assignment. 
Intuitively, observables are partitions that can be “empirically realized” in the 

sense that there are empirical means of determining which member of the 
partition contains the state of S at specific times in the history of S. Thus, if we 
can determine which member of υ contains the state of S and 

•
υυ s

 , then we 

can determine which member of 
•
υ  contains this state. Members of observable υ 

have no numerical values. They are related to “quantum mechanical observables” 
in a manner described in 4.2 below. 

The set of terminal observables for S is | sO


|, the set of lower bounds for Os. 
The set of maximal observables is 
 |ÔS| = {υ̂  ∈ | sO



| | #(υ̂ ) = max{#(υ ) | υ  ∈ | sO


|}}.     [2-16] 

The dimension of OS is 
 dimOS = #(υ̂ ) υ̂  ∈ |OS|.     [2-17] 
Os is homogeneous just when 
 |ÔS| = | sO



|.     [2-18] 
 

2.1.3 Notation 
It is sometimes convenient to regard members of S as well as members of |Os| 
and their members to be indexed. Indexed members of S are denoted by 
 iσs ∈ S     [2-19] 

 ‘ s
iυ ’ denotes the i-th observable of system S so that 

 s
i

s
i υο ∈i      [2-20] 

is element i of partition i of system S. Note that ‘iσs’ denotes a micro state, a 
member of S, while ‘ s

iοi ’ denotes a macro state, a sub-set of S. Below the right 

superscript ‘S’ will be omitted where context makes the relevant system evident. 
For compound systems, this notation becomes 

 ijσIII = 〈iσI, jσII〉 ∈ SIII     [2-21] 

 
 III

:Ii
III

ij
 υοοο ∈×= II

j
I
i

jiij III III
j:II
υ .     [2-22] 
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2.1.4 Interpretation 
Intuitively,  is provided by models for some “underlying” empirical theory 

distinct from QM. For example, it might be that 
  = M[CPM]     [2-23] 

where the underlying theory is classical particle mechanics. In the structuralist 
formalism, this situation would be represented by an inter-theoretical link. Where 

the structures in S ∈  are tuples of numerical valued functions over some 

domain, the obvious choice for the states of S is configurations of function values 
consistent with the relations among the functions in the structure in M[CPM]. 

While it is possible that  might be provided by a non-mechanical theory, e. g. 

thermodynamics, or even a non-physical theory, say from the behavioral sciences, 
no plausible “real life” examples spring readily to mind. The result-observable 
ontology and specific features of QM probabilities [2.3], thus far, appear to be de 
facto confined to mechanical theories. 

This conception of the relation between QM and some underlying theory is 
somewhat like the “instrumentalist” view of quantum mechanics sometimes 
attributed to Heisenberg (Jammer 1966, p. 323 ff.). Indeed, the structuralist 
formulation of QM may be regarded as a defense/explication of this view in that 
the view is expounded within the framework of a general, coherent view of how 
empirical theories work (Balzer, Moulines & Sneed 1987). 

A result-observation event may be intuitively conceived as an “observation 
process”, an interaction between an “object system” S and some “apparatus 
system” ′S  associated with the partition υ whose results are observed. This 
appears appropriate for cases in which the underlying theory is a physical theory. 
In some very abstract way, it may be generally appropriate. However, the formal 
apparatus of QM and the result-observable ontology are logically independent of 
this intuitive conception. Indeed, QM lacks the formal apparatus to express these 
intuitive ideas and standard treatments of quantum mechanics do not go beyond 
intuitive discussion. One may, however, at the cost of considerable notational 
complexity, emend QM to accommodate these ideas. Such an emendation 
appears essential to raising the question of the comparability of QM-probabilities 
with an underlying hidden variable determinism. This is not undertaken here. 
 

2.2 Algebraic structures 
The central algebraic construct for QM is the OS-result lattice s

oL . It is 
convenient to view s

oL  as constructed from Boolean algebras sBυ  generated by S-
observables OS. The domain for probability functions relevant to QM is the 
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Boolean algebra of result-observable sequences so
TB . These sequences are 

composed of S-result-observable pairs. 
 

2.2.1 Result boolean algebras 
Let  
 Bs = 〈POT(S), ⊆s, s, s, ~s, S, Λ〉     [2-24] 

the Boolean algebra of sub-sets of S and 
 sBυ  = 〈| sBυ |, ⊆ s

υ ,  s
υ ,  s

υ , ~ s
υ , S, Λ〉     [2-25] 

the sub-Boolean algebra of Bs generated by partition υ ∈ |Vs|. 
Note that 

 s
j

s
j j

B
'' υυυ ⇒  Boole

s

j
B

'υ .     [2-26] 

 

2.2.2 Result lattice 
The the Os-result lattice is 
 s

oL  = 〈| s
oL |,  s

o ,  s
o ,  s

o , ¬ s
o , S, Λ〉     [2-27] 

 

 | s
oL | = 


sO∈υ
υ    s

o  = ⊆s  | s
oL |2.     [2-28] 

The operations are such that, for all x, y ∈ | s
oL |: 

x s y = z ∈ | s
oL | ⇒ x  s

o  y = z 

otherwise x  s
o  y = S; 

 x s y = z ∈ | s
oL | ⇒ x  s

o  y = z     [2-29] 

otherwise x  s
o  y = Λs; 

x = ~.sy ∈ | s
oL | ⇒ x = ¬ s

o y. 

It can be shown that s
oL  is an orthomodular, orthocomplemented lattice 

(Birkhoff 1967, p. 52 ff.) and thus, generally non-distributive. The lattice 
dimension of s

oL  is 

 dimOLAT
s
oL  = dimOs = max{#(υ̂ ) | υ̂  ∈ |Ôs|}.     [2-30] 

Intuitively, to form s
oL , the Boolean algebras soBυ̂ , υ̂  ∈ |Ôs|, are “pasted 

together” with identical elements in different soBυ̂  “overlapping”. Each soBυ̂  is a 

sub-lattice of s
oL . Members of each soBυ̂  mutually commute (lattice theoretically); 

members of different soBυ̂ ’s do not. 
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2.2.3 Result-observable sequence boolean algebra 

Result-observable sequences [2.2.3.2] are sequences of result-observable pairs 
[2.2.3.1]. A result-observable sequence Boolean algebra so

TB  [2.2.3.3] serves as the 

domain for probability functions in QM. 
 

2.2.3.1 Result-observable pairs 
The set of SO-result observable pairs is 
 { }ss

o O∈= s
i

s
i

s
i υυο ,iΞ .     [2-31] 

Members of s
oΞ  are members of | s

oL | paired with all observables of which they 

are members. Generally, a single ο ∈ | s
oL | will be paired with many different 

observables. Intuitively, we think of S-observables υ ∈ |Os| as physical systems 
that interact with system S yielding different “results”, ο ∈ υ depending on the 
state of S. The same result may be obtained from different observables. The 
physical motivation for this abstraction is something like the Stern-Gerlach 
experiment (Fano & Fano 1959, Feynman 1965, Ch. 5). 
 

2.2.3.2 Result-observable sequences 
Essentially, QM is a theory about probabilities of certain result-observable 
sequences associated with S. For T ∈ INT(), we characterize these sequences as 
SO-result-observable sequences. 
 ( )s

o
so
T TSET ΞΠ  , = .     [2-32] 

The brackets and comma will be suppressed in the notation for members of s
oΞ  

so that 
 iοiυi := 〈iοi, υi〉 ∈ s

oΞ      [2-33] 

where the index ‘i’ of the observable υ and the index ‘i’ of a specific result iοi of υ 
have been suppressed. Or, more concisely, when it is not necessary to specify the 
result 
 ου := 〈ο, υ〉, ο ∈ υ.     [2-34] 
Note that the “null” observable {S} and its single result S appear as  
 S{S}     [2-35] 
the null result-observable pair. Intuitively, this is understood to be associated with 
an event in which no observation of S occurs, i.e. S is “isolated” or “undisturbed”. 

The generic member of so
TΠ  will be denoted by 

 so
TΠ∈ο      [2-36] 

so that, for all t ∈ T, there is some iοiυi ∈ s
oΞ  such that 
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 ( ) ttt:jt:it t υουοοο === i: .     [2-37] 

 

2.2.3.3 Boolean algebra: so
TB  

so
TB  is the algebra of SO-result-observable sequences where 

 | so
TB | = POT( so

TΠ ).     [2-38] 

Of particular interest are the members of | so
TB |: 

 ( ){ }
( ){ }

~

~

:

: .

ο ο π ο ο

υ ο π ο υ

= ∈ =

= ∈ =

so iT t
i:t

so iT t
i:t

1

2

Π

Π

i
i

 

     
[2-39] 

For these, juxtaposition denotes set theoretic intersection (conjunction). For 
example, 
 

t
T

tt ~~~~
: υουο =

t
.     [2-40] 

Note that 
 

tttt ~~~~
ουυο = .     [2-41] 

and that expressions like ‘
1-tt ~~

υο ’ are also well defined as members of | so
TB |. 

Likewise, the expressions ‘
t:jt:i ~~

ˆˆ υυ ’ and ‘
t:jt:i ~~

υοi ’ are well defined. However, 

 

Λ

Λ

=⇒≠

=

t:it:i
jii

t:jt:i

ji
~~

~~

, 

ˆˆ

υουυο

υυ
ii


 

     
[2-42] 

Intuitively, ‘
tt ~~

υο ’ denotes a “result-observation event”, or an “observation at t of 

observable υ with result ο“. Generally, symbols with the under-script ‘~’ denote 
“events”, elements of the Boolean algebra so

TB . Symbols stripped of this under-

script denote observables and their results associated with these events. Formal 
discussion required to explain rigorously this notational distinction is omitted. 

In this notation, 

( )[ ] ( ) ( )
( )[ [ )tt1tt

1tt1tti-ti-ttt
t1tt i Tt ∆+∆

+∆+∆
+∆ ∈∈∈∆= --

--
-

,0,0

~~~~~~, :  ,υουουογ     [2-43] 

is a sequence of result-observation events. The ‘t-i’ subscript indicates the position of 
the result observation event 

i-ti-t ~~
υο  in the sequence. The same sequence would be 

denoted by any permutation of the order of the conjuncts e.g. 
 

1-ttt1-t1-t1-ttt ~~~~~~~~
ουουυουο = .     [2-44] 

For intuitive clarity, the conjuncts appear in decreasing order in the sequence 
with result preceding observations. 
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2.3 Probabiltiy functions 
Probabilities appearing in non-theoretical structures for QM [E-2-1] are 
 p ∈ PROB( so

TB )     [2-45] 

where PROB(B) is the set of all probability functions over the Boolean algebra B. 
Certain conditional probabilities derived from these are those determined by 
QM. These conditional probabilities need to be identified in a way that is 
completely explicit about their arguments. Doing this is effected using the rather 
cumbersome notation developed in [2.2.3.3]. 

Conditional probabilities determined by QM are those of the form 
 

( ) ( )







+∆+∆∆∆ 1t1t ---- tttttti-ti-ttt
p

~~~~~~~~
υουουουο  . 

    [2-46] 

These are projection probabilities. It is important to understand that the order of the 
result observation events [E-2-43] is decisive in indicating which conditional 
probabilities are determined by QM, though the order of the conjuncts in the 
condition is not. Thus, 
 




=



2-t2-t1-t1-ttt2-t2-t1-t1-ttt

pp
~~~~~~~~~~~~
υοουυουουουο  

    [2-47] 

is determined by QM while 
 





2-t2-t1-ttt1-t

p
~~~~~~
υουυοο  and 




2-t2-t1-tt1-tt
p

~~~~~~
υουυοο  

    [2-48] 

though well defined as probability expressions (the arguments of the p-function 
being members of | so

TB |), are not determined by QM. Likewise, all the 

probability expressions in 
 ( ) ( )

1-t1-tt1-t1-ttt1-t1-ttt
ppp

~~~~~~~~~~~
/: υουυουουουο =


  

    [2-49] 

are well defined, but only the expression on the left side is determined by QM. 
QM determines these conditional probabilities without determining separately 
the components of the customary definition of conditional probabilities. Of 
course, QM does put limits on the values or the probabilities on the right. It will 
be seen below [4.1] that the specific way in which these conditional probabilities 
are determined by QM depends essentially on the order of the result observation 
events in [E-2-43]. 

Letting sequence right-to-left indicate temporal sequence, using the notation 
of [2.1.3] and being imprecise about the sequence of the right sub-scripts, [E-2-46] 
becomes 
 








kkjjii
p

~~~~~~
υουουο kji

  
    [2-50] 
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Further, letting the right subscripts on the ‘
j~

οj ’’s indicate a temporally preceding 

‘
j~

υ ’, it becomes 

 







kji
p

~~~
οοο kji

 . 
    [2-51] 

It will become apparent below [4.1] that [E-2-51] is roughly the way probabilities are 
commonly viewed in discussions of quantum mechanics (Ballentine 1986, pp. 885-
886, quoted above [1.1]). Quantum mechanical probabilities are indeed usually taken 
to be conditional probabilities, but the explicit nature of the conditioning event is 
suppressed in the notation. This considerably simplifies the notation and suffices for 
most purposes. But, certain questions of interpretation ([5.1.1.1.3], [4.2]) are clarified 
by more explicit notation. 

QM is a theory about probabilities as described in modern treatments of 
mathematical probability theory. Intuitively, these are probabilities of individual 
events which are determined, in some way, by facts about these individual events. 
However, QM has nothing to say about these individual events nor the way in 
which facts about them determine probabilities. More specifically, QM has 
nothing to say about how one might come to know about result-observation 
sequences that appear in these conditional probabilities nor about how this 
knowledge is related to the probability function values. In this sense QM is 
“incomplete”. Usual formulations of quantum mechanics are also “incomplete” 
in this way. This is viewed by some as a defect and efforts are made to remedy it 
(von Neumann 1955, Ch. VI, Sneed 1964, Chs. IV, V, Lombardi & Castagnino 
2008). This matter is not considered further here. 

More generally, QM is not committed to any specific view about the appropriate 
“interpretation” (e.g. personalistic, relative frequency, ensemble, propensity) of 
probability function values. There is a large body of general philosophical, as well as 
specifically quantum mechanical, literature pertaining to this question. No 
contribution to this literature is offered here. However, it may be useful to note that 
the personalistic interpretation, long defended by Jaynes (2003) as appropriate to 
statistical mechanical probabilities, has recently been suggested to be uniquely 
appropriate to quantum mechanics (Caves, Fuchs & Schack 2002). 
 

3. Theoretical structures: Mp[QMS] 

The set of theoretical structures for QM is Mp[QMS]. Its members are of the form 

 〈S, T, p, , [.], V〉     [3-1] 

where non-theoretical structures 
 〈S, T, p〉 ∈ Mpp[QMS]     [3-2] 
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are emended with a Hilbert space , a lattice morphism [.] which maps | s
oL | 

many-one into |L|, the lattice of sub-spaces of , and V, a set of unitary 

operators on . Members of V are dynamic operators, analogous to the 

Hamiltonian operator, which contribute to determining projection probabilities 
when null result observation events [E-3-35] occur. In the customary jargon of 
quantum mechanics, dynamic operators determine the change over time in the 
state vector of an isolated system. 

Members of V have no non-theoretical “correlates”; they are fully theoretical. 

This is a consequence of the austerity of the system concept in QM. When this 
concept is filled out to something like a physical theory, features of this theory 
will very likely constrain the choice of dynamic operators. 
 

3.1 Hilbert structures:  
The Hilbert space 
  = 〈〉, 〈〉〉     [3-3] 

is a vector space 〉 over the field of complex numbers  supplied with and inner 

product 〈〉. We require that the dimension of  is that of Os, i.e 

 dimVEC(〉) = dimOs     [3-4] 

[E-3-17] which is finite since S is a finite set. 

For the most part, familiar notation for constructs related to  is employed. 

Exceptions are: ‘|O|’ denotes generic linear operators on ; ‘|P|’ projection 

operators; ‘|W|’ statistical operators; ‘|Ô|’ the adjoint of ‘|O|’; ‘|I|’ is the 
identity operator. Adjacent ‘|’’s are merged in operator application and 
multiplication; thus, we write ‘|O|v〉’ and ‘|O|O|’. These exceptions are 
motivated by notational symmetry and harmony with the Dirac bra-ket notation. 
The use of overscript ‘’ in ‘|Ô|’ is totally unrelated to the use of the same 

notational device in ‘ο̂ ’. 
In contrast to most familiar expositions of quantum mechanics, rather than 

itself, the theoretical structure if QM focuses on the lattice of sub-spaces of  

(Halmos 1958, p. 16 ff.) 
 L = 〈|L|, , , , , 0̂ , 〉.     [3-5] 

It is a modular, orthocomplemented lattice (Birkhoff 1967, p. 52 ff.). L may be 
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visualized intuitively as an infinite number of “overlapping” Boolean algebras 
each corresponding to a basis for . 

 

3.2 [.]-Embeddings 
A [.]-embedding is a dimension preserving, orthocomplemented lattice morphism 
 [»] ∈ OLAT( s

oL , L)     [3-6] 

such that, for all ο ∈| s
oL |, 

 element-dimOLAT(ο) = sub-space-dim([ο]).     [3-7] 

Some additional notation is convenient. For all ο ∈| s
oL |, let 

 [ο] := [.](ο)  |[ο]| := |P|[ο]     [3-8] 

where |P|[ο] is the projection operator for  in corresponding to the sub-space 

[ο]. The [»]-image of s
oL  in |〉| is denoted by ‘[ s

oL ]’ and the set of projection 

operators corresponding to members of [ s
oL ] by ‘|[ s

oL ]|’ so that 

 |[ s
oL ]| ⊂ P     [3-9] 

the set of projection operators for . 

For sÔˆ ∈υ , 

 { }υοου ˆˆˆ:ˆ ∈= ][][      [3-10] 

is a set of mutually orthogonal (as sub-spaces) one-dimensional subspaces of , 

atoms of L. 

Generic normalized vectors in these sub-spaces are denoted by 
 | ο̂ 〉 ∈ [ο̂ ].     [3-11] 

Thus, for υ̂ , sÔˆ ∈
•
υ , inner products appear as 

 〈ο̂ |ο̂ 〉.     [3-12] 
For ο̂ i, ο̂ j ∈ υ̂ , ο̂ i ≠ ο̂ j, | ο̂ i〉 and |ο̂ j〉 are orthogonal (as vectors), i.e. 
 〈iο̂ | ο̂ j〉 = 0.     [3-13] 
The normalization requirement is that 
 〈iο̂ |ο̂ i〉 = 1.     [3-14] 
Requiring that the | ο̂ 〉 to be normalized simplifies some notation by allowing the 
omission of a “normalization factor”. 

The Kochen-Specker theorem (Held 2008) may be viewed, in part, as 
describing limitations on configurations of sub-spaces in |L| that can be the 
images of a [.]-embedding. However, conclusions frequently drawn from these 
limitations require further assumptions which are not true for QM [4.2]. 
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4. Theoretical laws: M[QMS] 

For theoretical structures of the form 
 〈S, T, p, , [.], V〉 ∈ Mp[QMS]     [4-1] 

the basic theoretical law of QM requires that the probability functions p [2.3] are 

partially determined by the inner product on the Hilbert space  via the 

embedding function [.]. The projection probability values [E-2-46] for maximal 
observables and ∆t=0 are completely determined in this way. Exogenous statistical 
operators together with dynamic operators U ∈ V determine the remainder. 

Theoretical structures satisfying these additional conditions are models for QM, 
members of M[QMS]. 

A general formulation [4.1] of QM-requirements is, of necessity, somewhat 
abstract. A more direct, intuitive insight is provided by considering some special 
cases [5.1]. An alternative formulation in terms of operator expectation values is 
sketched [4.2]. The empirical content of M[QMS] is discussed [4.3]. 

 

4.1 General case 
The most direct way to impose the desired conditions on the probability function 

p is to require that, for all ∆t ∈ [0, t – (∆t + 1) ∈ T, 

 ( )[ ] ( ) ( )1t1t
1t

+∆+∆
+∆ =

--
-

tti-ti-ttt
tt ~~~~~~, υουουογ       [4-2] 

there is some |W|, a statistical operator for , and 

 |E| ∈ SET(T, |[ s
oL ]|  V)     [4-3] 

such that 
 Tr|[ ( )1t +∆-tο ]|W|[ ( )ο ∧

+∆-t 1t
]| = 1     [4-4] 

and, for all i ∈ ∆t, 
 |Et-i|=|U| ∈ V ⇒ i- tο i- tυ = S{S}   |Et-i|=|P| ∈ |[ s

oL ]| ⇒ |[ i- tο ]|=|P|  [4-5] 

such that 

( ) ( )







+∆+∆∆∆ 1tt1ttttt-ti-ti-tt
p

--- ~~~~~~~~
υουουουο 

t
=Tr|Et|Et-1|...|Et-∆t|W|Êt-∆t|…|Êt-1|Êt|.               

[4-6] 
Note that the overscript ‘’ in [E-4-4] pertains to the operator |[ ( )1tt +∆-ο ]| and not 

to the ‘ο’ in ‘ ( )1tt +∆-ο ’. 

These are projection probabilities [E-2-46]. Recall that notation like ‘
t~

ο ’, 
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‘
t~

υ ’, etc. denotes a set of result-observation paths [2.3] which are appropriate 

arguments for the probability function p while ‘ tο ’ denotes a member of | s
oL | 

which is an appropriate argument for [.]. 
Requirement [E-4-21] assures that |W| assigns probability 1 to the result 

( )1tt +∆-~
ο  of the initial observation 

( )1tt +∆-~
υ  being in the sub-space [ ( )1tt +∆-ο ]. In 

effect, it “initializes” the statistical operator |W|. 
Requirement [E-4-6] determines the conditional probability of the result 

t~
ο , 

given the observation 
t~

υ , the result-observation sequence  

 
( ) ( )~ ~ ~ ~ ~ ~

ο υ υ ο ο υ
∆ ∆ ∆ + ∆ +- -

 

t -i t -i t - t t - t t tt 1 t 1
     [4-7] 

and the initial result-observable event 
 

( ) ( )1tt1tt +∆+∆ -- ~~
υο      [4-8] 

as the value of the trace function 
 Tr|Et|Et-1|...|Et-∆t|W|Êt-∆t|...|Êt-1|Êt|     [4-9] 
where 
 |Et|Et-1|...|Et-∆t|W|Êt-∆t|...|Êt-1|Êt|     [4-10] 

is the statistical operator obtained by the iterated application of some sequence of 
projection and unitary operators |E|, satisfying [E-4-5], on the initial statistical 
operator |W|. Note that the order of result-observable events is significant here 
both in determining |W| and in determining the order of subsequent operations 
on it. 

Condition [E-4-5] assures that the operators in |E| correspond to 
members of ( )[ ]t1tt ,+∆-γ  in such a way that members of V correspond to 

instances of the null result-observation event S{S} and projection operators 
[|]-corresponding to their results are assigned to non-null result-observation 
events. 

Intuitively, |W| represents some exogenous probability distribution over 
the members of the partition ( )1t +∆-tυ  in which the result ( )1tt +∆-ο  has 

probability 1 ([5.1.2.1.1]). The sequence |E| represents successive 
transformations of this probability distribution into probabilities of results 

i-t~
ο  of observation events 

i-t~
υ . 

The expression on the right side of [E-4-6] is essentially the same as that 
appearing in standard expositions of quantum mechanics (Ballentine 1998, p. 46, 
Messiah 1961, Ch. VIII) in somewhat unfamiliar notation suggested by Nielson 
& Chuang (2000, Sec. 8.2.). The probability expression on the left expresses the 
QM-interpretation of the right side of as a conditional probability. This 
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interpretation is implicit in many (but, surely not all) expositions of quantum 
mechanics. For QM, it is explicit (compare [E-4-51]). 
 

4.2 Operator expectation values 
In many discussions of quantum mechanics, what we present as the choice of a 

[.]-embedding is presented as the assignment of operators in  to “physical” 

observables. The physical content of specific applications of quantum mechanics 
inheres in this operator assignment. For this reason it is useful to see how 
operator assignment appears in QM. A rough sketch of this is provided. 

Eigenvalues of operators do not fall naturally out of the QM approach 
because results are not associated with numerical values. These can be added 
arbitrarily with a one-one function 
 v ∈ ISET(POT(S), [1, #POT (S))     [4-11] 

which assigns integer “values” to all sub-sets of S, and thus to all results. 
For [.]-embedding [.], υi ∈ |Os|, 

 [ ] [ ]( )ii OO υ,:=      [4-12] 

is the linear operator on  assigned to υi by [.] just when the spectral 

representation of [ ]
iO  in the orthonormal basis for  associated with maximal 

observable i
s

j υυ 
ˆ  

 { } n

1

=

=

j

j

j
jο̂      [4-13] 

is 
 [ ][ ] ( )( ) j

jj οοο ˆˆˆ j
jjiO



v=      [4-14] 

where ( )jο̂j


  is that unique ii υο ∈ˆi  such that ji οο ˆˆ ji ⊆ . The usual convention 

that repeated upper and lower indices ‘j’ indicate summation over j is observed. 
Only conditional operator expectation values are determined by QM since it 

determines only conditional probabilities. Thus, for operator [ ]
iO  at time t for 

probability function p is 
 [ ] ( )

p1-t1-tt
t

p1-t1-tt
iO

~~~~~~
ˆˆˆˆˆˆˆ υουουου v=      [4-15] 

    ( )( ) 


=
1-t1-tt

tt p
~~~

ˆˆˆ υουοο jj



v        (sum j). 
 [4-16] 

The QM restriction to conditional expectation values has non-trivial 
consequences. The Bell-Kochen-Specker argument (Held 2008) that simultaneous 
assignment of values to all quantum mechanical observables can not be carried 
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through in an obvious way for QM simply because QM operator expectation 
values are conditioned on observation events and results of previous observation 
events. This is not surprising. This conditioning is a violation of 
“noncontextuality” in the terminology sometimes used in discussions of this 
argument. Indeed, the use of conditional probabilities in QM might be regarded 
as simply a formal expression of “contextuality”. 
 

4.3 Empirical content 
In the absence of constraints, the empirical claim of QM is that the projection 
probabilities in its intended applications (i.e “found in nature”) can be obtained 
via [E-4-6] from some  

[|]-embedding____statistical  operator  |W|___sequence of dynamic 
and projection operators |E| 

satisfying [E-4-21] and [E-4-5]. Here, [|], |W| and |E| play a role roughly 
analogous to that of the mass and force functions the familiar structuralist 
reconstruction of the empirical claim of classical particle mechanics (CPM) 
(Balzer, Moulines & Sneed 1987, III.3) and projection probabilities play a role 
analogous to that of particle paths. Clearly, in the absence of further restrictions 
on these constructs, any member of Mpp[QMS] can be filled out in some way to a 

member of M[QMS]. Just as in CPM, the empirical content of the “top-level” 

element of QM’s specialization net is trivial. It is only with restrictions, 
specifically on [|] and the dynamic operators V that the empirical content 

becomes non-trivial. 
On an instrumentalist view [2.1.4], QM is simply a very general scheme for 

describing all possible projection probabilities. Some probabilities found in 
nature require [|]’s, and (perhaps less obviously) V’s with surprising, counter 

intuitive properties. That probabilities found in nature (are thereby revealed to) 
have such properties is a “mysterious fact” apparently crying out for 
“explanation”. No explanation is provided here. 
 

5. Specialization 
Specializations of M[QMS] may be conveniently divided into non-theoretical 

[5.1] and theoretical specializations. The most obvious specializations are those 
already mentioned [2.1] in which the underlying system structure is imported 
from some other theory. These are non-theoretical specializations. Other non-
theoretical specializations pertain to specific kinds of sequences of result-
observation events. They are analogous to particle mechanical systems with small 
sets of particles. Generally, theoretical specializations are identified by subsets of 



 Prolegomena to a Structuralist Reconstruction of Quantum Mechanics | 115 

V [5.2.1]; among these are models in which “entangled' non-product vectors in 

the tensor product space for compound systems are produced by unitary 
transformations from V acting on initial product vectors assigned to results of 

initial observations on the compound system [5.2.1]. 
 

5.1 Non-theoretical 
It is useful to distinguish special cases of QM-requirements on p according to 
whether observables are all maximal [5.1.1], mixed maximal, non-maximal [5.1.2] 
all non-maximal and whether observations are non-null or null. 

[|]-images of results of maximal observables are essentially vectors in , pure 

QM-states; non-maximal observables are represented by a more general statistical 
operator |W|, “mixed QM -states”. Non-null observations have non-trivial results; 
null observations have trivial results, but may result in dynamic changes in QM-
states described by dynamic operators in V. The distinction between pure and 

mixed QM-states is analogous to the familiar distinction between pure and mixed 
quantum mechanical states. 

In all cases, values of ∆t ∈ {0, 1} suffice to demonstrate features of QM-
probabilities illustrating QM analogs to familiar features of quantum mechanical 
probabilities. A selection of these cases suffices for this purpose without providing 
exhaustive, detailed consideration of all cases. 
 

5.1.1 Maximal observables 

In the case that, for all i ∈ [1, ∆t + 1], there exist sÔˆ ∈υ , υο ˆˆ ∈  such that 

 
i-ti-ti-ti-t ~~~~

ˆˆ υουο =      [5-1] 

i.e. all observables are maximal, 
 

( )
( )οο ˆˆ 1t+∆

+∆= -
-

t
1ttW  οο ˆˆ t

ttE =      [5-2] 

and 

( ) ( )







+∆+∆∆∆ 1tt1tttttti-ti-ttt
p

---- ~~~~~~~~
ˆˆˆˆˆˆˆˆ υοουυουο   = Tr|Et|Et-1|...|Et-∆t|W|Êt-∆t|...|Êt- 

 1|Êt||.     [5-3] 

Intuitively, the result of an initial maximal observation t-(∆t + 1) is propagated by 
a sequence of further, non-null observations and./.or dynamic operations until a 
final maximal observation at t. The special cases of sequences of all non-null 
observations [5.1.1.1] and two non-null observations separated by a sequence of 
null observations are considered [5.1.1.2]. 
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5.1.1.1 Non-null 
Here  
 { }SSii ≠υο ˆˆ .     [5-4] 

Thus, the [|]-embedding suffices to determine all probabilities. Two special cases 
[5.1.1.1.1], [5.1.1.1.2] are considered and some implications of these cases for 
conditional, joint probability distributions considered [5.1.1.1.3]. 

 

5.1.1.1.1 ∆t = 0 
Here 
 οο ˆˆ 1-t

1-tW =  οο ˆˆ t
tttt EE ==∆-  .     [5-5] 

 ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ                       

ˆ ˆ ˆ ˆ                       

ˆ ˆ                       .

ο υ ο υ ο ο ο ο ο ο

ο ο ο ο

ο ο ο ο

ο ο

=

=

=

=

t t -1 tt t t -1 t -1 t t -1 t

t t -1t -1 t

t tt -1 t -1

t t -1

p Tr

2

 

     
 
 

[5-6] 

The analog to [E-5-6] in quantum mechanics is sometimes called ‘the Born rule’ 
recalling the historical origin of the probabilistic interpretation of the Hilbert 
space formalism. It is the key feature of a probabilistic interpretation of this 
formalism. 
 

5.1.1.1.2 ∆t = 1 
Here 
 οο ˆˆ 1-t

1-t1-ttt EE ==∆-       οο ˆˆ t
ttE =       οο ˆˆ 2-t

2-tW =      [5-7] 
 

 ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ                                  

ˆ ˆ ˆ ˆ                                  

  

ο υ ο υ ο υ ο ο ο ο ο ο ο ο ο

ο ο ο ο ο ο ο ο

ο ο ο ο

=

=

=

t t -1 t -2 t -1t t t -1 t -1 t -2 t -2 t t -1 t -2 t -1 t

t t -1 t -2 t -1t -1 t -2 t -1 t

t t -1t -1 t -2

p Tr

2 2

( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ                                .ο υ ο υ ο υ ο υ= t t t -1 t -1 t -1 t -1 t -2 t -2p p

 

     
 
 

[5-8] 

 

5.1.1.1.3 Conditional joint distributions 
The cases [5.1.1.1.1], [5.1.1.1.2], serve to illustrate an important point about the 
role of conditional joint probability distributions in QM. 

For distinct iυ̂ , jυ̂ , kυ̂  the most obvious expression for a conditional joint 

distribution of the results of observations of non-commuting, maximal observables, 
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






1-t:j1-t:kt:jt:it:jt:i
p

~~~~~~
ˆˆˆˆˆˆ υουυοο kji  

    [5-9] 

is not defined because 
 

0=



2-t:j2-t:kt:jt:i

p
~~~~
ˆˆˆˆ υουυ k  

    [5-10] 

 [E-5-42]. Intuitively, QM simply does not consider simultaneous observation of 
distinct maximal observables. 

The probabilities 












=







2-t:j2-t:k1-t:jt:i

1-t:j2-t:j2-t:k1-t:j1-t:jt:it:i2-t:j2-t:k1-t:jt:it:jt:i
ppp

~~~~

~~~~~~~~~~~~~

ˆˆˆˆ

ˆˆˆˆˆˆˆˆˆˆˆˆˆ

υουυ

ουουουουουυοο

k

jkjikji

 [5-11] 

results of iυ̂  and jυ̂ indexed by different values of i, j are well defined. However, 

QM [E-5-6] does not determine these probabilities unless one is willing to assume 
generally that 
 






=







2-t:j2-t:k1-t:j1-t:j2-t:j2-t:k1-t:jt:i1-t:j
pp

~~~~~~~~~
ˆˆˆˆˆˆˆˆˆ υουουουυο kjkj . 

    [5-12] 

Such an assumption appears quite arbitrary within the framework of QM. 
The probabilities 

 




1-t:k1-t:kt:it:i

p
~~~~
ˆˆˆˆ υουο ki  







1-t:k1-t:kt:jt:j
p

~~~~
ˆˆˆˆ υουο kj  

    [5-13] 

though determined by QM [E-5-6], are not marginal distributions derived from 
the joint distribution of [E-5-11]. The two conditional probabilities of [E-5-13] 
have different conditions. There is no reason to expect that their values, for 
results indexed by different values of i, j, can be derived as marginal distributions 
from any common joint distribution. The conditional probability of [E-5-11], is 
indeed a well defined, conditional joint probability distribution, albeit not 
derivable from the laws of QM. But the condition is different from that in either 
of the probabilities in [E-5-13]. It is not a joint distribution for which the 
probabilities in [E-5-13] are marginal distributions. For QM, this fact effectively 
blocks the analog of Wigner-Moyal (Moyal 1949, Wigner 1932) approach to 
attempting (unsuccessfully) a calculation of joint density functions for non-
commuting observables in quantum mechanics. Probability values for results of 
observations non-commuting observables will always be conditional probabilities 
on different conditions and thus need not be derivable from a common joint 
distribution. That these probabilities can, not be derivable from a common joint 
distribution is no argument against the employment of the usual concept of 
mathematical probability in QM. 
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5.1.1.2 Null 
Next, consider the case in which all result-observation events except initial and 
terminal are null, i. e. for all i ∈ [1, ∆t + 1], 
 { }SSi-ti-t =υο ˆˆ .     [5-14] 

Intuitively, after an initial preparation at t – (∆t + 1), the system is isolated and 
subjected to a sequence of (generally non-identity) dynamic operators from V over 
the interval [t – 1, t – ∆t] and finally a observation 

t~
υ̂  

 { } { }
( ) ( )

2
v

UUWUUTr

SSSSp

t

t
ttt1-t1-ttt

t
t

1tt1ttttt-ti-ti-ttt

ο

οοοο

υουο

ˆ

ˆˆˆˆˆˆ

ˆˆˆˆ
~~~~

=

==

=




∆∆

+∆+∆∆∆

                                  

--

---~~~~

 



 

     
 
 

[5-15] 

where 
 

( )
( )

tt1-t
1tt

1tt1-ttt UUUUvv ∆
+∆

+∆∆= -
-

-- ˆˆˆˆ
 οο .     [5-16] 

Note that there need not be any s
oL∈ο̂  such that 

 ][ ο̂=vv .     [5-17] 

Intuitively, sequences of dynamic operators in V may (but need not) carry the [|]-

image of the result of an observation event into a vector in |〉| that is not the 

[|]-image if any member of s
oL . Roughly, projection operators not in ][ s

oL  may 

have “empirical significance” in QM. Whether such exist depends on the 

contents of V. Indeed, it may (but need not) be the case that all of |〉| is 

reachable by some sequence of dynamic operators in V. 

For members of M[QMS], it is natural to take QM-states of S to be the [|]-

images members of s
oL  together with those members of |L| which are 

reachable via [E-5-5] by some sequence of projection operators in s
oL  and 

dynamic operators in V. 

 

5.1.2 Maximal, non-maximal observables 
In these cases, it is convenient to expresses projection operator explicitly in terms 
of the distinct, non-intersecting, orthonormal bases, 
 { } n

1

=

=

i

iiο̂i  { } n

1

=

=

j

jjο̂j  { } n

1

=

=

k

kkο̂k .     [5-18] 
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Recall [2.2.2] that 
 [ ]( )

 


∈
=⇒⊂∈=

j

jj
j jj jj

j j οοοοο ˆ ; , ˆˆ sum  nosum n1,][ .     [5-19] 

Only non-null observations will be considered. 
 

5.1.2.1 ∆t = 0 
In the case of ∆t = 0, there are two sub-cases 
 

1-t1-ttt ~~~~
ˆˆ υουο   

1-t1-ttt ~~~~
ˆˆ υουο      [5-20] 

both of which are considered in more detail. 
 

5.1.2.1.1 
1-t1-ttt ~~~~

ˆˆ υουο  

QM requires [4.1] that there is some statistical operator |W| such that 
 Tr|W|[οt-1]| = 1     [5-21] 
and 
 οοοουουο ˆˆˆˆˆˆ

~~~~

t
t

t
t

1-t1-ttt
WTrp =


 .     [5-22] 

If, in the orthonormal bases of [E-5-18], 
 ( )

[ ]( )sum  nosum,

sum no

n1, jj
j

1-t

i
it

t

 ;  ˆˆ

ˆˆˆˆ

⊂∈=

=

jjj
j

i
i

οοο

οοοο

][
 

     
[5-23] 

then there exist 
 [ ] [ ]( )n1,0,1 sum, 1  ⊂∈=∈ jjj

j
j

j   ,         WW      [5-24] 

such that 
 [ ]( )n1,sum, ⊂∈= jjj

i
i

j   ˆˆ   j
j WW οο      [5-25] 

and 
 [ ]( )






=

=

⊂∈=



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i
j

i
i

j
j

i
i
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pW

W

WTrp
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ˆˆˆˆ
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οοοοοουουο

ji
j

j

i
j

j
j

i
i

j
j

j
j

i
i jj

2

n1, sum,     

 

     
 
 

[5-26] 

Intuitively, the jWj are a probability distribution over the vectors jο̂j  which 

span the subspace [οt–1]. jWj is the probability that the QM-state jο̂j  represents 

the result of observation 
1-t~

υ . This probability is not determined by QM. 
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5.1.2.1.2 
1-t1-ttt ~~~~

ˆˆ υουο  

If, in the orthonormal bases of [E-5-18], 
 [ ]( )

( )
( )sum no

sum no

sum  no ;sum, n1,

j
j

j
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i
i

t
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j
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i
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[5-27] 

 

 ( ) ( ) [ ]( )

∑

∑
∑

∈

∈

∈






=

=

=

=

⊂∈=












i

ji

i i
j

i j
i

i
i

i
i

j
j

i
i

i
i

j
j

i
i j ,ii

jjii

i
j

j
i
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j
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οο
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2
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[5-28] 

5.1.2.2 ∆t = 1 
In the case of ∆t = 1, there are 4 sub-cases 

 
2-t2-t1-t1-ttt ~~~~~~

ˆˆˆˆ υουουο    
2-t2-t1-t1-ttt ~~~~~~

ˆˆˆˆ υουουο     
2-t2-t1-t1-ttt ~~~~~~

ˆˆˆˆ υουουο   

 
2-t2-t1-t1-ttt ~~~~~~

ˆˆ υουουο . 

  [5-29] 

Of these, only 
2-t2-t1-t1-ttt ~~~~~~

ˆˆˆˆ υουουο  will be considered in detail. It illustrates 

“interference” for QM probabilities. First, the abstract mathematics is considered 
[5.1.2.2.1] then an interpretation in terms of slit interference is provided. 
 

5.1.2.2.1 Mathematics 
If 
 

1-tj
s

j υυυ =
ˆ      [5-30] 

so that 
 

[ ]( )
k
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j
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i
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i
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n1,sum, ][
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[5-31] 

then 
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[5-32] 

 
where 
 ( )'-

 
'

' θθοοοοοοοο cos
j ,j' k

j
j

i
k

j
j

i∑ ∈
=


ˆˆˆˆˆˆˆˆ k

j
j

i
k

j
j

i2IF      [5-33] 

and θ pertains to the polar representation of the complex inner products. 
Traditionally, the summands in IF are called ‘interferfence terms’. 
 

5.1.2.2.2 Interference 
The mathematics of [5.1.2.2.1] can be interpreted to provide an analog of the 
familiar quantum mechanical treatment of “slit interference”. The treatment here 
closely follows that of Feynman in (Feynman, Leighton & Sands 1965, Sec. 3-1). 
Roughly, it attempts to show that essential features of this discussion can be 
reproduced within the conceptual framework of QM. The further discussion of 
Sec. 3-2 can also be rendered in the QM framework considering a compound 
electron-photon system, but this is not described here. 

In Feynman’s terms, make the intuitive identifications: 
 

kυ̂ ~ source     kο̂k ~ source state |s〉      iυ̂ ~ detector 

iο̂i ~detector state |xi〉 

 
[5-34] 

 
jυ̂ ~ wall  jο̂j ~ wall states |j〉.     [5-35] 

Feynman considers examples only of 1 and 2 state “walls” the states of which are 
|1〉, |2〉. 
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Intuitively, in Feynman’s terminology, the source system produces a beam of 
particles in state |s〉; the wall system is a configuration of “slits” in a “wall” 
through which the beam passes; the detector system is a “screen” which collects 
the particles. In the QM treatment, there is only one system S, the particle, and 
three different observables for this system. The probabilities [E-5-32] for a fixed 

value of 
kkjji ~~~~~

ˆˆˆ υουου k  and different values of i in 
i~

ο̂i  provide a probability 

distribution of detector-observable results. One may envision this distribution 
displayed vertically on a “screen” in the manner of the diagrams in Feynman’s 
discussion. These probabilities correspond to relative numbers of particles 
collected at a specific position on the screen. 

In the QM treatment, the source beam is a maximal result-observation event 

kk ~~
ˆˆ υοk , represented by it's [|]-image, the QM state kο̂k . The passage of the 

beam through the wall is the nonmaximal result observation event 
jj ~~

υο , 

represented by 
 [ ]( )

 


∈
=⊂∈=

j

jj
j jj jjj

j
j οοοοο ˆ  ˆˆ          n1,sum, ][ .     [5-36] 

The wall itself may be viewed as the non-maximal observable jυ . The arrival of 

the beam at the detector is the maximal result-observation event 
ii ~~

ˆˆ υοi , 

represented by iο̂i . 

Walls may be viewed more generally as non-maximal observables jυ  such that 

 
j

s
j υυ 

ˆ      [5-37] 

where jυ̂  is any maximal observable distinct from, and non-intersecting with, iυ̂  

and kυ̂ . The null observable {S} may be viewed as an n-slit wall 

 [ ]( )n1,sum, ∈= jjj
j   ˆˆ Ij

j οο      [5-38] 

each elementary projection operator in the sum being a slit. Walls with m < n 
slits are produced by closing slits in the {S} wall to obtain 
 [ ]( )n1,sum, ⊂∈jjj

j   ˆˆ     j
j οο      [5-39] 

where the elementary projection operators in the sum are the remaining open 
slits. A 1-slit wall is 
 

j
j οο ˆˆ j

j  (no sum).     [5-40] 

A 2-slit wall 
 

j
j

j
j οοοο ˆˆˆˆ j'

j'
j

j +  j ≠ ′j      [5-41] 

is obtained from this 1-slit wall by opening another slit corresponding to jυ̂  result 'jο̂j . 
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A wall may be viewed as a selection device for results of maximal observable 

jυ̂ . A 1-slit wall selects a single result; a 2-slit wall selects a set of two results, etc. 

The n-slit wall selects all results, i. e. no results. Both source and detector maximal 
observables may be viewed as 1-slit walls though this is not usually regarded as 
relevant to discussions of interference. Walls with 1 [5.1.2.2.2.1] and 2 slits 
[5.1.2.2.2.2] are considered in more detail. 
 

5.1.2.2.2.1 1-Slit # = 1 

If # = 1, the wall has “one slit”. 

 
1ο̂j ~ wall state |1〉.     [5-42] 

This case is identical with [5.1.1.1.2] above where, now in more explicit notation, 
 ( )

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~
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ο υ ο υ ο υ ο υ ο υ ο υ

ο υ ο υ ο υ ο υ

 =   
   =       

i k

i k

t t t -1 t -1 t -2 t -2
i i j j k k

i i j j j j k k

p p

p p

1

1 1

 

     
 

[5-43] 

 

5.1.2.2.2.2 2-Slit # = 2 

If # = 2, the wall has “two slits”. 

 
1ο̂j , 2ο̂j ~ wall states |1〉, |2〉     [5-44] 
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   [5-45] 

and [E-5-32] reduces to 
 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
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[5-46] 

Thus, probabilities 






kkjjii
p

~~~~~~
ˆˆˆˆ υουουο ki  at the detector are not the sum of 

probabilities for the 1- slit observables. There are “interference terms” IF. 
Within the austere conceptual apparatus of QM, this result is not particularly 

surprising or counter intuitive. There is no good reason to expect that the 
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probabilities at the detector would simply be the sum of the conditional 
probabilities segments of the separate “paths” from the source to the detector 
calculated in the manner of [5.1.1.1.2]. But, there are some bad reasons. This 
expectation might arise from (perhaps implicitly) taking the probabilities in 
question to be unconditional “path probabilities” 
 ( ) ( )

( )
( ) ( )

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ .

ο υ ο υ ο υ ο υ ο ο υ ο υ

ο υ ο υ ο υ ο υ ο υ ο υ

ο υ ο υ ο υ ο υ ο υ ο υ

 = =  

= =

= +





i k i k

i k i k

i k i k

i i j j k k i i j j j k k

i i j j k k i i j j k k

i i j j k k i i j j k k

p p

p

p p

1 2

1 2

1 2
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But, these are not among the probabilities determined by QM. Probabilities 
actually determined by QM yield 
 ( )~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ .

ο υ ο υ ο υ ο υ ο ο υ ο υ

ο υ ο υ ο υ ο υ ο υ ο υ

   = =      
 =   





i k i k

i k i k

i i j j k k i i j j j k k

i i j j k k i i j j k k

p p

p

1 2

1 2

 

     
 
[5-48] 

On might be tempted to identify the expression on the right of the last line above 
with 
 






+







kkjjikkjjii ~~~~~~~~~~~~
ˆˆˆˆˆˆˆˆˆˆ υουουουουουο kki 21

i
pp i . 

     [5-49] 

But, this would be a mistake. This identification is not a consequence of the usual 
axioms of probability theory. Further, the conditional probabilities appearing as 
summands above are not among those determined by QM. 

That the quantum mechanical result analogous to [E-5-46] is surprising and 
counter intuitive appears to be a consequence of features of the underlying theory 

about  [2.1.4]. In particular, quantum mechanical systems have spatial concepts 

which carry with them certain pre-theoretic, intuitive expectations. That these 
expectations are not met is (was historically) surprising. 
 

5.2 Theoretical 
Special cases of unitary operators in two-dimensional observable structures [5.2.1] 
and entanglement models [5.2.2] are considered. 
 

5.2.1 Two dimensional V 
Consider a 2-dimensional observable structure Os, such that 



 Prolegomena to a Structuralist Reconstruction of Quantum Mechanics | 125 

 { }Λ,,ˆ,ˆ SOs
21 υυ=    { }1

2
1

1
1 οου ˆ,ˆˆ =   { }2

2
2

1
2 οου ˆ,ˆˆ =      [5-50] 

and a [|]-embedding yielding the orthonormal basies 
 { } { }ˆ ˆ ˆ ˆ, , .ο ο ο ο⊥ ⊥= =B        B1 21 1 2 21 2 1 2       [5-51] 

Let U be the set of all unitary operators on a 2-dimensional . 

Consider some special cases of |U| ∈ U, exhibiting their matrix 

representations (denoted generally by ‘Ui’ without ‘| |’ ) in the orthonormal basis 
i
⊥B : 

 
|X| 
 







=

01

101X   
α β     

=     β α     
0 1

1 0
 

     [5-52] 

 

 
2

1
1

1 οο ˆˆ =X   1
1

2
1 οο ˆˆ =X       [5-53] 

|Z| 
 







=

01

101Z   
α α     

=     − β −β     
1 0

0 1
 

     [5-54] 

 

 
1

1
1

1 οο ˆˆ =X   1
1

2
1 οο ˆˆ −=X       [5-55] 

|H| 
 







−

=
11

11

2

11H  
α α + β     

=     − β α − β     
1 11 1
1 12 2

 
   [5-56] 

 ( ) 22
1

1
1

1
1 /ˆˆˆ οοο +=H  ( ) 22

1
1

1
2

1 /ˆˆˆ οοο −=H  
   [5-57] 

More generally, let 
 U1 = {|U|1 | ∃|U| ∈ U  U1 is the matrix representation of |U| in 1

⊥B }.  [5-58] 

Abusing notation, consider 
 U1 ∈ SET(||4, U1)      [5-59] 

such that, for all α, β, γ, δ ∈ ||4, 

 

( ) 




















 −






=

iδδ/

iδδ/-

iββ/

iββ/-

e

e

cossin

sin
γ

cos

e

eδ γ, β, α,
0

0

22

22
0

0
γγ

γ
1U . 

      
[5-60] 

It can be shown that (Nielson & Chuang 2000, p. 20) 
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 U1 ∈ SET(||4, U1).      [5-61] 

Define an equivalence relation 
U
≈  on ||4 by 

 ( ) ( )'' ρρρρ 11 UU
U

=⇔≈ .      [5-62] 

Then, sub-sets of ||4/
U
≈  determine theoretical specializations of the non-

theoretical specialization of QM to 2-dimensional observable structure. 
 

5.2.2 Entanglement 
Entanglement models for QM are roughly those in which “entangled” non-
product vectors in the tensor product space representing the QM -state for the 
compound system have the following property. Projection probabilities for results 
of observations of component system observables for each of the compound 
systems are “correlated” in such a way that the probability of a component system 
observable result for one component, given that of another, is either 1 or 0. 
Entangled vectors do not represent the result of any observation on the 
compound system. Rather, they are produced by unitary transformations from V 

acting on initial product vectors assigned to results of initial observations on the 
compound system. 

More precisely, an entanglement model for QM is an 
 〈SI



II, T, p, I⊗II, [|]I⊗II, VI⊗II〉 ∈ M[QMS]      [5-63] 

such that there exist ∆t ∈ [0, t – (∆t+1) ∈ T, 

 { } ( ) ( )
IIIIII

i-t

III
o1tt

III
1tt

IIIi
i-t

III
i-t

III
1-t

III
II1-t

III
II

j
t

III
It

III
I

i

U

SS
⊗⊗

+∆+∆

∈

Ξ∈

V



-- υουουο ˆˆˆˆ


 
 

[5-64] 

such that, for 
 ( ) ( )1t-t

IIIi
i

1t-t
III

IIIW +∆
+∆⊗ = 



οο ˆˆ       [5-65] 
 

 [ ] [ ] i
j

III
t-t

III
2-t

IIIIII
2-t

III
t-t

III

1-t
III

I
jIII

t
III

I
iIII UUWUUTr δοο =⊗

∆
⊗⊗⊗⊗

∆

⊗⊗⊗ ˆˆ


 . 

[5-66] 

Thus, in entanglement models 
 { } ( ) ( ) i

j1t-t
III

1t-t
IIIi

i-t

III
i-t

III

1-t

III

II1-t

III

II

j

t

III

I

III

I

i SSp δυουουο =



+∆+∆



~~~~~~
ˆˆˆˆ



~~t
. [5-67] 

Here the observables t
III

I
υ̂ and 1-t

III
II
υ̂  are members of |OIII| corresponding to 

component system maximal observables Iυ̂ .and IIυ̂  in |ÔI| and |ÔII| 
respectively. These corresponding compound system observables are not maximal, 
hence their results are not decorated with overscript ‘’. The ‘i’ and ‘j’ left 
superscripts index the results of observables Iυ̂  and IIυ̂ . For simplicity, we 
assume these 
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 # Iυ̂  = # IIυ̂       [5-68] 

so that [E-5-66] establishes a one-one correspondence between the results of these 
observables. 

Here mathematical details about component system observables and the 
projection operators [|]-corresponding to their results have been omitted. 

Intuitively, for some initial result-observation events 
 ( ) ( )1t-t

III
1t-t

IIIi
+∆+∆



~~
ˆˆ υο       [5-69] 

there exists a sequence of dynamic operators from VI⊗II that carries the projection 

operator corresponding to this event 
 ( )[ ] ( ) ( ) III

1t-t
IIIi

i
1t-t
III1t-t

IIIi W ⊗
+∆

+∆
+∆ =



 οοο ˆˆˆ       [5-70] 

into a projection operator 
 III

t-t
III

2-t
IIIIII

2-t
III
t-t UUWUU ⊗

∆
⊗⊗⊗⊗

∆
ˆˆ

       [5-71] 

such that two subsequent projection operations 
 [ ] [ ] III

1-t
III

I
jIII

t
III

I
i ⊗⊗

 οο       [5-72] 

corresponding to result-observation events 
  

 
t

III

It

III

I

i 

~~
υ̂ο  and 

1-t

III

II1-t

III

II

j 

~~
υ̂ο       [5-73] 

yield a projection operator whose TrI⊗II-value is the delta function i
jδ . 

Still more intuitively, the conditional probability [E-5-67] may be understood 

to mean that knowing the result of observation event 
1-t

III

II



~
υ̂  on a system SIII in 

QM-state ( )
i

1t-t
III ο̂+∆


 allows one to predict with certainty the result of observation 

event 
1-t

III

I



~
υ̂  on the system in the QM-state resulting from the first observation 

event. 
That entangled models for QM exist is a mathematical fact demonstrated by 

the example of the QM-counterpart of Bell states (Nielson & Chuang 2000, pp. 
25-26). The counter intuitive features of Bell states largely escape capture in the 
QM framework due to the absence of spatial concepts. Quantum mechanical 
counterparts of QM entangled states play a key role in theoretical discussions of 
quantum computing and physical realizations of them have been produced. 
 

6. Constraints: C[QMS] 

Four constraints, 
 Ci ⊂ POT(Mp[QMS])      [6-1] 
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i ∈ [0, 1, 2, 3] will be considered informally, so that 
 C[QMS] = 

i iC .      [6-2] 

C0 requires that systems in  can be regarded as “real” physical systems in that 

they can not appear more than one place members of C0. C1 requires that the 
theoretical apparatus of QM assigned to systems be regarded an “intrinsic 
property” of ≈-equivalence classes of these systems in the sense ≈-equivalent 
systems are assigned the same theoretical apparatus wherever they appear in 
members of C1. It appears that C0 and C1 should be taken to apply to all 
intended applications of QM. That is, it should appear in the basic or “top” 
theory element in the specialization “tree” for QM. 

C2 requires that whenever -concatenations of elementary systems equivalent 

to those appearing in members of Mp ∈ C2 appear as concatenates in another 

member of Mp, the Hilbert space  assigned to the concatenation is the tensor 

product of the ’s assigned to the concatenates. Further, the [|]-embedding 

works in such a way that 
 [ ] [ ] [ ] III

III
II

II
I

I
⊗=⊗ οοοο        [6-3] 

where the details of the tensor product notation have not been explained 
here. This is somewhat analogous to the requirement in classical collision 
mechanics that mass be extensive with respect to concatenation (Balzer, 
Moulines & Sneed 1987, pp. 105-106). 

C3 requires, in addition, that the [ ]-embedding into these tensor product spaces 
have certain symmetry properties with respect to certain ≈-equivalence classes of 
systems. Describing these symmetry properties requires some general concepts 
pertaining to permutations of sets and identifying certain ≈-equivalence classes of 

the set systems , analogous to Bosons and Fermions. 

This leads to the definition of a general concept of [|]-symmetry of which 
concepts analogous to those commonly encountered in quantum mechanics 
appear as special cases. 

It appears that C2 and C3 are less general than C0 and C1 in that they might 
pertain only to certain kinds of systems. 
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